scholarly journals Solving satisfiability problems by the ground-state quantum computer

2005 ◽  
Vol 72 (5) ◽  
Author(s):  
Wenjin Mao
2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Suzanne Bintanja ◽  
Ricardo Espíndola ◽  
Ben Freivogel ◽  
Dora Nikolakopoulou

Abstract We construct an eternal traversable wormhole connecting two asymptotically AdS4 regions. The wormhole is dual to the ground state of a system of two identical holographic CFT’s coupled via a single low-dimension operator. The coupling between the two CFT’s leads to negative null energy in the bulk, which supports a static traversable wormhole. As the ground state of a simple Hamiltonian, it may be possible to make these wormholes in the lab or on a quantum computer.


2021 ◽  
Vol 103 (5) ◽  
Author(s):  
Jessica Lemieux ◽  
Guillaume Duclos-Cianci ◽  
David Sénéchal ◽  
David Poulin

Quantum ◽  
2020 ◽  
Vol 4 ◽  
pp. 372
Author(s):  
Lin Lin ◽  
Yu Tong

Preparing the ground state of a given Hamiltonian and estimating its ground energy are important but computationally hard tasks. However, given some additional information, these problems can be solved efficiently on a quantum computer. We assume that an initial state with non-trivial overlap with the ground state can be efficiently prepared, and the spectral gap between the ground energy and the first excited energy is bounded from below. With these assumptions we design an algorithm that prepares the ground state when an upper bound of the ground energy is known, whose runtime has a logarithmic dependence on the inverse error. When such an upper bound is not known, we propose a hybrid quantum-classical algorithm to estimate the ground energy, where the dependence of the number of queries to the initial state on the desired precision is exponentially improved compared to the current state-of-the-art algorithm proposed in [Ge et al. 2019]. These two algorithms can then be combined to prepare a ground state without knowing an upper bound of the ground energy. We also prove that our algorithms reach the complexity lower bounds by applying it to the unstructured search problem and the quantum approximate counting problem.


Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 391
Author(s):  
Mateusz Ostaszewski ◽  
Edward Grant ◽  
Marcello Benedetti

We propose an efficient method for simultaneously optimizing both the structure and parameter values of quantum circuits with only a small computational overhead. Shallow circuits that use structure optimization perform significantly better than circuits that use parameter updates alone, making this method particularly suitable for noisy intermediate-scale quantum computers. We demonstrate the method for optimizing a variational quantum eigensolver for finding the ground states of Lithium Hydride and the Heisenberg model in simulation, and for finding the ground state of Hydrogen gas on the IBM Melbourne quantum computer.


2009 ◽  
Vol 07 (04) ◽  
pp. 725-737 ◽  
Author(s):  
ANDY T. S. WAN ◽  
M. H. S. AMIN ◽  
SHANNON X. WANG

We study the effect of an environment consisting of noninteracting two level systems on Landau-Zener transitions with an interest on the performance of an adiabatic quantum computer. We show that if the environment is initially at zero temperature, it does not affect the transition probability. An excited environment, however, will always increase the probability of making a transition out of the ground state. For the case of equal intermediate gaps, we find an analytical upper bound for the transition probability in the limit of large number of environmental spins. We show that such an environment will only suppress the probability of success for adiabatic quantum computation by at most a factor close to 1/2.


Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 509
Author(s):  
Qingfeng Wang ◽  
Ming Li ◽  
Christopher Monroe ◽  
Yunseong Nam

The ability to simulate a fermionic system on a quantum computer is expected to revolutionize chemical engineering, materials design, nuclear physics, to name a few. Thus, optimizing the simulation circuits is of significance in harnessing the power of quantum computers. Here, we address this problem in two aspects. In the fault-tolerant regime, we optimize the Rz and T gate counts along with the ancilla qubit counts required, assuming the use of a product-formula algorithm for implementation. We obtain a savings ratio of two in the gate counts and a savings ratio of eleven in the number of ancilla qubits required over the state of the art. In the pre-fault tolerant regime, we optimize the two-qubit gate counts, assuming the use of the variational quantum eigensolver (VQE) approach. Specific to the latter, we present a framework that enables bootstrapping the VQE progression towards the convergence of the ground-state energy of the fermionic system. This framework, based on perturbation theory, is capable of improving the energy estimate at each cycle of the VQE progression, by about a factor of three closer to the known ground-state energy compared to the standard VQE approach in the test-bed, classically-accessible system of the water molecule. The improved energy estimate in turn results in a commensurate level of savings of quantum resources, such as the number of qubits and quantum gates, required to be within a pre-specified tolerance from the known ground-state energy. We also explore a suite of generalized transformations of fermion to qubit operators and show that resource-requirement savings of up to more than 20%, in small instances, is possible.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Yunseong Nam ◽  
Jwo-Sy Chen ◽  
Neal C. Pisenti ◽  
Kenneth Wright ◽  
Conor Delaney ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document