scholarly journals How to make traversable wormholes: eternal AdS4 wormholes from coupled CFT’s

2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Suzanne Bintanja ◽  
Ricardo Espíndola ◽  
Ben Freivogel ◽  
Dora Nikolakopoulou

Abstract We construct an eternal traversable wormhole connecting two asymptotically AdS4 regions. The wormhole is dual to the ground state of a system of two identical holographic CFT’s coupled via a single low-dimension operator. The coupling between the two CFT’s leads to negative null energy in the bulk, which supports a static traversable wormhole. As the ground state of a simple Hamiltonian, it may be possible to make these wormholes in the lab or on a quantum computer.

Open Physics ◽  
2010 ◽  
Vol 8 (3) ◽  
Author(s):  
Peter Kuhfittig

AbstractIt is shown in this paper that it is possible, at least in principle, to construct a traversable wormhole that is stable to linearized radial perturbations by specifying relatively simple conditions on the shape and redshift functions.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Andrés Anabalón ◽  
Bernard de Wit ◽  
Julio Oliva

Abstract We study traversable wormhole solutions in pure gauged N = 2 supergravity with and without electromagnetic fields, which are locally isometric under SO(2, 1) × SO(1, 1). The model allows for 1/2-BPS wormhole solutions whose corresponding globally defined Killing spinors are presented. A non-contractible cycle can be obtained by compactifying one of the coordinates which leaves the residual supersymmetry unaffected, although not all the isometries will remain realized globally. The wormholes connect two asymptotic, locally AdS4 regions and depend on certain electric and magnetic charge parameters and, implicitly, on the range of the compact coordinate around the throat. We provide an analysis of the boundary of the spacetime and show that it can be either disconnected or not, depending on the values of the parameters in the metric. Finally, we show how a class of these space-times avoid a topological censorship theorem.


2021 ◽  
Author(s):  
◽  
Alexander Simpson

<p>Various spacetime candidates for traversable wormholes, regular black holes, and ‘black-bounces’ are presented and thoroughly explored in the context of the gravitational theory of general relativity. All candidate spacetimes belong to the mathematically simple class of spherically symmetric geometries; the majority are static (time-independent as well as nonrotational), with a single dynamical (time-dependent) geometry explored. To the extent possible, the candidates are presented through the use of a global coordinate patch – some of the prior literature (especially concerning traversable wormholes) has often proposed coordinate systems for desirable solutions to the Einstein equations requiring a multi-patch atlas. The most interesting cases include the so-called ‘exponential metric’ – well-favoured by proponents of alternative theories of gravity but which actually has a standard classical interpretation, and the ‘black-bounce’ to traversable wormhole case – where a metric is explored which represents either a traversable wormhole or a regular black hole, depending on the value of the newly introduced scalar parameter a. This notion of ‘blackbounce’ is defined as the case where the spherical boundary of a regular black hole forces one to travel towards a one-way traversable ‘bounce’ into a future reincarnation of our own universe. The metric of interest is then explored further in the context of a time-dependent spacetime, where the line element is rephrased with a Vaidya-like time-dependence imposed on the mass of the object, and in terms of outgoing/ingoing EddingtonFinkelstein coordinates. Analysing these candidate spacetimes extends the pre-existing discussion concerning the viability of non-singular black hole solutions in the context of general relativity, as well as contributing to the dialogue on whether an arbitrarily advanced civilization would be able to construct a traversable wormhole.</p>


2021 ◽  
Vol 103 (5) ◽  
Author(s):  
Jessica Lemieux ◽  
Guillaume Duclos-Cianci ◽  
David Sénéchal ◽  
David Poulin

Quantum ◽  
2020 ◽  
Vol 4 ◽  
pp. 372
Author(s):  
Lin Lin ◽  
Yu Tong

Preparing the ground state of a given Hamiltonian and estimating its ground energy are important but computationally hard tasks. However, given some additional information, these problems can be solved efficiently on a quantum computer. We assume that an initial state with non-trivial overlap with the ground state can be efficiently prepared, and the spectral gap between the ground energy and the first excited energy is bounded from below. With these assumptions we design an algorithm that prepares the ground state when an upper bound of the ground energy is known, whose runtime has a logarithmic dependence on the inverse error. When such an upper bound is not known, we propose a hybrid quantum-classical algorithm to estimate the ground energy, where the dependence of the number of queries to the initial state on the desired precision is exponentially improved compared to the current state-of-the-art algorithm proposed in [Ge et al. 2019]. These two algorithms can then be combined to prepare a ground state without knowing an upper bound of the ground energy. We also prove that our algorithms reach the complexity lower bounds by applying it to the unstructured search problem and the quantum approximate counting problem.


Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 391
Author(s):  
Mateusz Ostaszewski ◽  
Edward Grant ◽  
Marcello Benedetti

We propose an efficient method for simultaneously optimizing both the structure and parameter values of quantum circuits with only a small computational overhead. Shallow circuits that use structure optimization perform significantly better than circuits that use parameter updates alone, making this method particularly suitable for noisy intermediate-scale quantum computers. We demonstrate the method for optimizing a variational quantum eigensolver for finding the ground states of Lithium Hydride and the Heisenberg model in simulation, and for finding the ground state of Hydrogen gas on the IBM Melbourne quantum computer.


2020 ◽  
Vol 98 (5) ◽  
pp. 474-483
Author(s):  
Z. Yousaf ◽  
A. Ikram ◽  
M. Ilyas ◽  
M.Z. Bhatti

This paper explores spherically symmetrical dynamical traversable wormhole solutions for an anisotropic fluid configuration in the context of f(R) gravity. We construct the corresponding field equations and investigate the wormhole solutions by specifying the redshift and shape functions for three models of f(R) gravity. Graphical analysis shows that ordinary matter satisfies the null as well as weak energy conditions against the time and radial coordinates for each model. It is concluded that dynamical traversable wormholes are supported by this theory.


Sign in / Sign up

Export Citation Format

Share Document