scholarly journals One-loop functional renormalization group study for the dimensional reduction and its breakdown in the long-range random field O( N ) spin model near lower critical dimension

2019 ◽  
Vol 100 (2) ◽  
Author(s):  
Yoshinori Sakamoto
2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Apratim Kaviraj ◽  
Slava Rychkov ◽  
Emilio Trevisani

Abstract We revisit perturbative RG analysis in the replicated Landau-Ginzburg description of the Random Field Ising Model near the upper critical dimension 6. Working in a field basis with manifest vicinity to a weakly-coupled Parisi-Sourlas supersymmetric fixed point (Cardy, 1985), we look for interactions which may destabilize the SUSY RG flow and lead to the loss of dimensional reduction. This problem is reduced to studying the anomalous dimensions of “leaders” — lowest dimension parts of Sn-invariant perturbations in the Cardy basis. Leader operators are classified as non-susy-writable, susy-writable or susy-null depending on their symmetry. Susy-writable leaders are additionally classified as belonging to superprimary multiplets transforming in particular OSp(d|2) representations. We enumerate all leaders up to 6d dimension ∆ = 12, and compute their perturbative anomalous dimensions (up to two loops). We thus identify two perturbations (with susy- null and non-susy-writable leaders) becoming relevant below a critical dimension dc ≈ 4.2 - 4.7. This supports the scenario that the SUSY fixed point exists for all 3 < d ⩽ 6, but becomes unstable for d < dc.


2020 ◽  
Vol 17 (04) ◽  
pp. 2050053 ◽  
Author(s):  
Dario Zappalà

The presence of isotropic Lifshitz points for a [Formula: see text]-symmetric scalar theory is investigated with the help of the Functional Renormalization Group. In particular, at the supposed lower critical dimension [Formula: see text], evidence for a continuous line of fixed points is found for the [Formula: see text] theory, and the observed structure presents clear similarities with the properties observed in the two-dimensional Berezinskii–Kosterlitz–Thouless phase.


2004 ◽  
Vol 18 (06) ◽  
pp. 919-948 ◽  
Author(s):  
HISAMITSU MUKAIDA ◽  
YOSHINORI SAKAMOTO

Extending the usual Ginzburg–Landau theory for the random-field Ising model, the possibility of dimensional reduction is reconsidered. A renormalization group for the probability distribution of magnetic impurities is applied. New parameters corresponding to the extra ϕ4 coupling constants in the replica Hamiltonian are introduced. Although they do not affect the critical phenomena near the upper critical dimension, they can when dimensions are lowered.


Sign in / Sign up

Export Citation Format

Share Document