scholarly journals Majorana zero modes in a quantum wire platform without Rashba spin-orbit coupling

2020 ◽  
Vol 101 (19) ◽  
Author(s):  
Ömer M. Aksoy ◽  
John R. Tolsma
2006 ◽  
Vol 23 (11) ◽  
pp. 3065-3068 ◽  
Author(s):  
Wang Yi ◽  
Sheng Wei ◽  
Zhou Guang-Hui

2010 ◽  
Vol 24 (07) ◽  
pp. 649-656
Author(s):  
XI FU ◽  
GUANGHUI ZHOU

We investigate theoretically the spin current and spin current induced electric field in a weak Rashba spin-orbit coupling quantum wire (QW) using a definition for spin current by means of scattering matrix. It is found that there exists two non-zero linear spin current density elements which have oscillation peaks at the center of QW and their strengths can be changed by the number of propagation modes and Rashba constant, respectively. Moreover, the spin current induced electric field has also been calculated and its strength is measurable with present technology with which can be used to detect spin current.


2021 ◽  
Author(s):  
Fabían Gonzalo Medina ◽  
Dunkan Martínez ◽  
Alvaro Díaz-Fernández ◽  
Francisco Domínguez-Adame ◽  
Luis Rosales ◽  
...  

Abstract The quest for Majorana zero modes in the laboratory is an active field of research in condensed matter physics. In this regard, there have been many theoretical proposals; however, their experimental detection remains elusive. In this article, we present a realistic setting by considering a quantum ring with Rashba spin-orbit coupling and threaded by a magnetic flux, in contact with a topological superconducting nanowire. We focus on spin-polarized persistent currents to assess the existence of Majorana zero modes. We find that the Rashba spin-orbit coupling allows for tuning the position of the zero modes and has sizable effects on spin-polarized persistent currents. Our results pave the way towards probing the existence of Majorana zero modes.


2010 ◽  
Vol 405 (17) ◽  
pp. 3581-3584
Author(s):  
Hang Li ◽  
Yuan Ping Chen ◽  
Yue E Xie ◽  
Jian Xin Zhong

2011 ◽  
Vol 20 (7) ◽  
pp. 077302
Author(s):  
Zhan-Feng Song ◽  
Ya-Dong Wang ◽  
Hui-Bin Shao ◽  
Zhi-Gang Sun

Sign in / Sign up

Export Citation Format

Share Document