Phase diagrams and superconductivity of ternary Na-Al-H compounds at high pressure

2021 ◽  
Vol 104 (10) ◽  
Author(s):  
Hao Song ◽  
Zihan Zhang ◽  
Mingyang Du ◽  
Qiwen Jiang ◽  
Defang Duan ◽  
...  
Keyword(s):  
1998 ◽  
Vol 43 (3) ◽  
pp. 362-366 ◽  
Author(s):  
P. Marteau ◽  
P. Tobaly ◽  
V. Ruffier-Meray ◽  
J. C. de Hemptinne

2004 ◽  
Vol 16 (49) ◽  
pp. 8905-8922 ◽  
Author(s):  
G Knebel ◽  
M-A Méasson ◽  
B Salce ◽  
D Aoki ◽  
D Braithwaite ◽  
...  

1994 ◽  
Vol 13 (5) ◽  
pp. 355-357 ◽  
Author(s):  
H. Araki ◽  
T. Yamane ◽  
H. Yoshida ◽  
Y. Minamino ◽  
S. Saji ◽  
...  
Keyword(s):  

2008 ◽  
Vol 21 (2) ◽  
pp. 439-445 ◽  
Author(s):  
Bérengère Guignon ◽  
Laura Otero ◽  
Antonio D. Molina-García ◽  
Pedro D. Sanz

1968 ◽  
Vol 72 (4) ◽  
pp. 1327-1334 ◽  
Author(s):  
Alfred J. Darnell ◽  
William A. McCollum
Keyword(s):  

2008 ◽  
Vol 403 ◽  
pp. 77-80 ◽  
Author(s):  
Peter Kroll

A combination of first-principle and thermochemical calculations is applied to compute the phase diagrams of rhenium-nitrogen and of ruthenium-nitrogen at elevated temperature and high pressure. We augment total energy calculations with our approach to treat the nitrogen fugacity at high pressures. We predict a sequential nitridation of Re at high-pressure/high-temperature conditions. At 3000 K, ReN will form from Re and nitrogen at about 32 GPa. A ReN2 with CoSb2-type structure may be achieved at pressures exceeding 50 GPa at this temperature. Marcasite-type RuN2 will be attainable at 3000 K at pressures above 30 GPa by reacting Ru with nitrogen.


Sign in / Sign up

Export Citation Format

Share Document