Liquid Water-Ice I Phase Diagrams under High Pressure: Sodium Chloride and Sucrose Models for Food Systems

2008 ◽  
Vol 21 (2) ◽  
pp. 439-445 ◽  
Author(s):  
Bérengère Guignon ◽  
Laura Otero ◽  
Antonio D. Molina-García ◽  
Pedro D. Sanz
2013 ◽  
Vol 47 ◽  
pp. 167-178 ◽  
Author(s):  
M. P. Andreev

Lichen flora and vegetation in the vicinity of the Russian base «Molodyozhnaya» (Enderby Land, Antarctica) were investigated in 2010–2011 in details for the first time. About 500 specimens were collected in 100 localities in all available ecotopes. The lichen flora is the richest in the region and numbers 39 species (21 genera, 11 families). The studied vegetation is very poor and sparse, but typical for coastal oases of the Antarctic continent. The poorness is caused by the extremely harsh climate conditions, insufficient availability of liquid water, ice-free land, and high insolation levels. The dominant and most common lichens are Rinodina olivaceobrunnea, Amandinea punctata, Candelariella flava, Physcia caesia, Caloplaca tominii, Lecanora expectans, Caloplaca ammiospila, Lecidea cancriformis, Pseudephebe minuscula, Lecidella siplei, Umbilicaria decussata, Buellia frigida, Lecanora fuscobrunnea, Usnea sphacelata, Lepraria and Buellia spp.


1998 ◽  
Vol 43 (3) ◽  
pp. 362-366 ◽  
Author(s):  
P. Marteau ◽  
P. Tobaly ◽  
V. Ruffier-Meray ◽  
J. C. de Hemptinne

2021 ◽  
Vol 104 (10) ◽  
Author(s):  
Hao Song ◽  
Zihan Zhang ◽  
Mingyang Du ◽  
Qiwen Jiang ◽  
Defang Duan ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Johanna Klahold ◽  
Christian Hauck ◽  
Florian Wagner

<p>Quantitative estimation of pore fractions filled with liquid water, ice and air is one of the prerequisites in many permafrost studies and forms the basis for a process-based understanding of permafrost and the hazard potential of its degradation in the context of global warming. The volumetric ice content is however difficult to retrieve, since standard borehole temperature monitoring is unable to provide any ice content estimation. Geophysical methods offer opportunities to image distributions of permafrost constituents in a non-invasive manner. A petrophysical joint inversion was recently developed to determine volumetric water, ice, air and rock contents from seismic refraction and electrical resistivity data. This approach benefits from the complementary sensitivities of seismic and electrical data to the phase change between ice and liquid water. A remaining weak point was the unresolved petrophysical ambiguity between ice and rock matrix. Within this study, the petrophysical joint inversion approach is extended along the time axis and respective temporal constraints are introduced. If the porosity (and other time-invariant properties like pore water resistivity or Archie exponents) can be assumed invariant over the considered time period, water, ice and air contents can be estimated together with a temporally constant (but spatially variable) porosity distribution. It is hypothesized that including multiple time steps in the inverse problem increases the ratio of data and parameters and leads to a more accurate distinction between ice and rock content. Based on a synthetic example and a field data set from an Alpine permafrost site (Schilthorn, Swiss Alps) it is demonstrated that the developed time-lapse petrophysical joint inversion provides physically plausible solutions, in particular improved estimates for the volumetric fractions of ice and rock. The field application is evaluated with independent validation data including thaw depths derived from borehole temperature measurements and shows generally good agreement. As opposed to the conventional petrophysical joint inversion, its time-lapse extension succeeds in providing reasonable estimates of permafrost degradation at the Schilthorn monitoring site without <em>a priori </em>constraints on the porosity model.</p>


Sign in / Sign up

Export Citation Format

Share Document