scholarly journals Complete spin and valley polarization by total external reflection from potential barriers in bilayer graphene and monolayer transition metal dichalcogenides

2021 ◽  
Vol 104 (15) ◽  
Author(s):  
P. A. Maksym ◽  
H. Aoki
2018 ◽  
Vol 9 ◽  
pp. 780-788 ◽  
Author(s):  
Haitao Chen ◽  
Mingkai Liu ◽  
Lei Xu ◽  
Dragomir N Neshev

Background: Two-dimensional (2D) transition-metal dichalcogenides (TMDCs) with intrinsically crystal inversion-symmetry breaking have shown many advanced optical properties. In particular, the valley polarization in 2D TMDCs that can be addressed optically has inspired new physical phenomena and great potential applications in valleytronics. Results: Here, we propose a TMDC–nanoantenna system that could effectively enhance and direct emission from the two valleys in TMDCs into diametrically opposite directions. By mimicking the emission from each valley of the monolayer of WSe2 as a chiral point-dipole emitter, we demonstrate numerically that the emission from different valleys is directed into opposite directions when coupling to a double-bar plasmonic nanoantenna. The directionality derives from the interference between the dipole and quadrupole modes excited in the two bars, respectively. Thus, we could tune the emission direction from the proposed TMDC–nanoantenna system by tuning the pumping without changing the antenna structure. Furthermore, we discuss the general principles and the opportunities to improve the average performance of the nanoantenna structure. Conclusion: The scheme we propose here can potentially serve as an important component for valley-based applications, such as non-volatile information storage and processing.


2020 ◽  
Vol 3 (4) ◽  
pp. 042003
Author(s):  
Zhaoli Gao ◽  
Meng-Qiang Zhao ◽  
Md Masruck Alam Ashik ◽  
Alan T Charlie Johnson

2D Materials ◽  
2017 ◽  
Vol 4 (2) ◽  
pp. 025016 ◽  
Author(s):  
M Baranowski ◽  
A Surrente ◽  
D K Maude ◽  
M Ballottin ◽  
A A Mitioglu ◽  
...  

2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Gunnar Berghäuser ◽  
Ivan Bernal-Villamil ◽  
Robert Schmidt ◽  
Robert Schneider ◽  
Iris Niehues ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mengyao Li ◽  
Ivan Sinev ◽  
Fedor Benimetskiy ◽  
Tatyana Ivanova ◽  
Ekaterina Khestanova ◽  
...  

AbstractThe rise of quantum science and technologies motivates photonics research to seek new platforms with strong light-matter interactions to facilitate quantum behaviors at moderate light intensities. Topological polaritons (TPs) offer an ideal platform in this context, with unique properties stemming from resilient topological states of light strongly coupled with matter. Here we explore polaritonic metasurfaces based on 2D transition metal dichalcogenides (TMDs) as a promising platform for topological polaritonics. We show that the strong coupling between topological photonic modes of the metasurface and excitons in TMDs yields a topological polaritonic Z2 phase. We experimentally confirm the emergence of one-way spin-polarized edge TPs in metasurfaces integrating MoSe2 and WSe2. Combined with the valley polarization in TMD monolayers, the proposed system enables an approach to engage the photonic angular momentum and valley and spin of excitons, offering a promising platform for photonic/solid-state interfaces for valleytronics and spintronics.


2015 ◽  
Vol 6 (1) ◽  
Author(s):  
Wei-Ting Hsu ◽  
Yen-Lun Chen ◽  
Chang-Hsiao Chen ◽  
Pang-Shiuan Liu ◽  
Tuo-Hung Hou ◽  
...  

Abstract A robust valley polarization is a key prerequisite for exploiting valley pseudospin to carry information in next-generation electronics and optoelectronics. Although monolayer transition metal dichalcogenides with inherent spin–valley coupling offer a unique platform to develop such valleytronic devices, the anticipated long-lived valley pseudospin has not been observed yet. Here we demonstrate that robust valley-polarized holes in monolayer WSe2 can be initialized by optical pumping. Using time-resolved Kerr rotation spectroscopy, we observe a long-lived valley polarization for positive trion with a lifetime approaching 1 ns at low temperatures, which is much longer than the trion recombination lifetime (∼10–20 ps). The long-lived valley polarization arises from the transfer of valley pseudospin from photocarriers to resident holes in a specific valley. The optically initialized valley pseudospin of holes remains robust even at room temperature, which opens up the possibility to realize room-temperature valleytronics based on transition metal dichalcogenides.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sriram Guddala ◽  
Yuma Kawaguchi ◽  
Filipp Komissarenko ◽  
Svetlana Kiriushechkina ◽  
Anton Vakulenko ◽  
...  

AbstractNonreciprocity and nonreciprocal optical devices play a vital role in modern photonic technologies by enforcing one-way propagation of light. Here, we demonstrate an all-optical approach to nonreciprocity based on valley-selective response in transition metal dichalcogenides (TMDs). This approach overcomes the limitations of magnetic materials and it does not require an external magnetic field. We provide experimental evidence of photoinduced nonreciprocity in a monolayer WS2 pumped by circularly polarized (CP) light. Nonreciprocity stems from valley-selective exciton population, giving rise to nonlinear circular dichroism controlled by CP pump fields. Our experimental results reveal a significant effect even at room temperature, despite considerable intervalley-scattering, showing promising potential for practical applications in magnetic-free nonreciprocal platforms. As an example, here we propose a device scheme to realize an optical isolator based on a pass-through silicon nitride (SiN) ring resonator integrating the optically biased TMD monolayer.


Sign in / Sign up

Export Citation Format

Share Document