scholarly journals Detecting delocalization-localization transitions from full density distributions

2021 ◽  
Vol 104 (23) ◽  
Author(s):  
Miroslav Hopjan ◽  
Giuliano Orso ◽  
Fabian Heidrich-Meisner
1990 ◽  
Vol 213 ◽  
Author(s):  
Rainhard Laag ◽  
Wolfgang A. Kaysser ◽  
GÜnter Petzow

ABSTRACTPrealloyed powders of NiAl, NiAl-5Ti, NiAl-5Nb and NiAl-5Ti-5Nb (at.%) were gas atomized with an average particle size of 90 μm and cooling rates of > 104 K/s. The powders were attritor milled under Ar atmosphere reducing the average particle size to 1.5 μm. Sintering CIP compacts developed microstructure and density distributions, which allowed subsequent containerless HIPing to near full density (>98.5%) and a final grain size < 8 μm. Alloying of NiAl with 5at.% Nb or Ti increased its hardness, Young's modulus, toughness and creep resistance. The room temperature fracture path changed from primarily intergranular (NiAl) to primarily transgranular (Nb, Ti alloyed), increasing the Klc, values from 3.8 to 14.4 and 15.3 MPa√m, respectively. For comparison, HIPed materials from the as-atomized powders were also tested.


Author(s):  
J. W. Mellowes ◽  
C. M. Chun ◽  
I. A. Aksay

Mullite (3Al2O32SiO2) can be fabricated by transient viscous sintering using composite particles which consist of inner cores of a-alumina and outer coatings of amorphous silica. Powder compacts prepared with these particles are sintered to almost full density at relatively low temperatures (~1300°C) and converted to dense, fine-grained mullite at higher temperatures (>1500°C) by reaction between the alumina core and the silica coating. In order to achieve complete mullitization, optimal conditions for coating alumina particles with amorphous silica must be achieved. Formation of amorphous silica can occur in solution (homogeneous nucleation) or on the surface of alumina (heterogeneous nucleation) depending on the degree of supersaturation of the solvent in which the particles are immersed. Successful coating of silica on alumina occurs when heterogeneous nucleation is promoted and homogeneous nucleation is suppressed. Therefore, one key to successful coating is an understanding of the factors such as pH and concentration that control silica nucleation in aqueous solutions. In the current work, we use TEM to determine the optimal conditions of this processing.


Author(s):  
Gyeung Ho Kim ◽  
Mehmet Sarikaya ◽  
D. L. Milius ◽  
I. A. Aksay

Cermets are designed to optimize the mechanical properties of ceramics (hard and strong component) and metals (ductile and tough component) into one system. However, the processing of such systems is a problem in obtaining fully dense composite without deleterious reaction products. In the lightweight (2.65 g/cc) B4C-Al cermet, many of the processing problems have been circumvented. It is now possible to process fully dense B4C-Al cermet with tailored microstructures and achieve unique combination of mechanical properties (fracture strength of over 600 MPa and fracture toughness of 12 MPa-m1/2). In this paper, microstructure and fractography of B4C-Al cermets, tested under dynamic and static loading conditions, are described.The cermet is prepared by infiltration of Al at 1150°C into partially sintered B4C compact under vacuum to full density. Fracture surface replicas were prepared by using cellulose acetate and thin-film carbon deposition. Samples were observed with a Philips 3000 at 100 kV.


2020 ◽  
Author(s):  
Denis Artiukhin ◽  
Patrick Eschenbach ◽  
Johannes Neugebauer

We present a computational analysis of the asymmetry in reaction center models of photosystem I, photosystem II, and bacteria from <i>Synechococcus elongatus</i>, <i>Thermococcus vulcanus</i>, and <i>Rhodobacter sphaeroides</i>, respectively. The recently developed FDE-diab methodology [J. Chem. Phys., 148 (2018), 214104] allowed us to effectively avoid the spin-density overdelocalization error characteristic for standard Kohn–Sham Density Functional Theory and to reliably calculate spin-density distributions and electronic couplings for a number of molecular systems ranging from dimeric models in vacuum to large protein including up to about 2000 atoms. The calculated spin densities showed a good agreement with available experimental results and were used to validate reaction center models reported in the literature. We demonstrated that the applied theoretical approach is very sensitive to changes in molecular structures and relative orientation of molecules. This makes FDE-diab a valuable tool for electronic structure calculations of large photosynthetic models effectively complementing the existing experimental techniques.


1992 ◽  
Vol 7 (3) ◽  
pp. 121-125 ◽  
Author(s):  
Claire Schaffnit ◽  
Jacques Silvy ◽  
C. T.J. Dodson

2018 ◽  
Vol 941 ◽  
pp. 1276-1281
Author(s):  
Anna Terynková ◽  
Jiří Kozlík ◽  
Kristína Bartha ◽  
Tomáš Chráska ◽  
Josef Stráský

Ti-15Mo alloy belongs to metastable β-Ti alloys that are currently used in aircraft manufacturing and Ti15Mo alloy is a perspective candidate for the use in medicine thanks to its biotolerant composition. In this study, Ti15Mo alloy was prepared by advanced techniques of powder metallurgy. The powder of gas atomized Ti-15Mo alloy was subjected to cryogenic milling to achieve ultra-fine grained microstructure within the powder particles. Powder was subsequently compacted using spark plasma sintering (SPS). The effect of cryogenic milling on the microstructure and phase composition of final bulk material after SPS was studied by scanning electron microscopy. Sintering at 750°C was not sufficient for achieving full density in gas atomized powder, while milled material could be successfully sintered at this temperature. Alpha phase particles precipitated during sintering and their size, as well as the size of beta matrix grains, was strongly affected by the sintering temperature.


2020 ◽  
Vol 500 (1) ◽  
pp. 1054-1070
Author(s):  
Luca Ciotti ◽  
Antonio Mancino ◽  
Silvia Pellegrini ◽  
Azadeh Ziaee Lorzad

ABSTRACT Recently, two-component spherical galaxy models have been presented, where the stellar profile is described by a Jaffe law, and the total density by another Jaffe law, or by an r−3 law at large radii. We extend these two families to their ellipsoidal axisymmetric counterparts: the JJe and J3e models. The total and stellar density distributions can have different flattenings and scale lengths, and the dark matter halo is defined by difference. First, the analytical conditions required to have a nowhere negative dark matter halo density are derived. The Jeans equations for the stellar component are then solved analytically, in the limit of small flattenings, also in the presence of a central BH. The azimuthal velocity dispersion anisotropy is described by the Satoh k-decomposition. Finally, we present the analytical formulae for velocity fields near the centre and at large radii, together with the various terms entering the virial theorem. The JJe and J3e models can be useful in a number of theoretical applications, e.g. to explore the role of the various parameters (flattening, relative scale lengths, mass ratios, rotational support) in determining the behaviour of the stellar kinematical fields before performing more time-expensive integrations with specific galaxy models, to test codes of stellar dynamics and in numerical simulations of gas flows in galaxies.


2013 ◽  
Vol 833 ◽  
pp. 125-129
Author(s):  
Hao Zhang ◽  
Zhong Min Zhao ◽  
Long Zhang ◽  
Shuan Jie Wang

By introducing (CrO3+Al) high-energy thermit into (Ti+B4C) system and designing adiabatic temperature of reactive system as 3000°C,3200°C, 3400°C, 3600°C and 3800°C respectively, a series of solidified TiC-TiB2were prepared by combustion synthesis in ultrahigh gravity field with the acceleration 2000 g. XRD, FESEM and EDS results showed that the solidified TiCTiB2were composed of a number of TiB2primary platelets, irregular TiC secondary grains, and a few of isolated Al2O3inclusions and Cr-based alloy. Because of the enhanced Stokes flow in mixed melt with the increased adiabatic temperature, Al2O3droplets were promoted to float up and separate from TiC-TiB2-Me liquid while constitutional distribution became more and more uniform in TiC-TiB2-Me liquid, resulting in not only the sharply-reduced Al2O3inclusions in the solidified ceramic but also the refined microstructure and the improved homogeneity in the ceramic, and ultrafine-grained microstructure with a average thickness of TiB2platelets smaller than 1μm began to appear in near-full-density ceramic as the adiabatic temperature exceeded 3600°C, so the densification, fracture toughness and flexural strength of the ceramic were enhanced with the increased adiabatic temperature of the reactive system.


2021 ◽  
Vol 87 (1) ◽  
Author(s):  
Valery V. Pipin

We study the helicity density patterns which can result from the emerging bipolar regions. Using the relevant dynamo model and the magnetic helicity conservation law we find that the helicity density patterns around the bipolar regions depend on the configuration of the ambient large-scale magnetic field, and in general they show a quadrupole distribution. The position of this pattern relative to the equator can depend on the tilt of the bipolar region. We compute the time–latitude diagrams of the helicity density evolution. The longitudinally averaged effect of the bipolar regions shows two bands of sign for the density distributions in each hemisphere. Similar helicity density patterns are provided by the helicity density flux from the emerging bipolar regions subjected to surface differential rotation.


Sign in / Sign up

Export Citation Format

Share Document