Influence of the supercell structure on the folded acoustical Raman line intensities in superlattices

1987 ◽  
Vol 35 (6) ◽  
pp. 2808-2817 ◽  
Author(s):  
B. Jusserand ◽  
D. Paquet ◽  
F. Mollot ◽  
F. Alexandre ◽  
G. Le Roux
Keyword(s):  
1981 ◽  
Vol 80 (3) ◽  
pp. 445-450 ◽  
Author(s):  
Lap M. Cheung ◽  
David M. Bishop ◽  
David L. Drapcho ◽  
Gerd M. Rosenblatt

2002 ◽  
Vol 65 (18) ◽  
Author(s):  
M. V. Abrashev ◽  
J. Bäckström ◽  
L. Börjesson ◽  
V. N. Popov ◽  
R. A. Chakalov ◽  
...  

1976 ◽  
Vol 32 ◽  
pp. 343-349
Author(s):  
Yu.V. Glagolevsky ◽  
K.I. Kozlova ◽  
V.S. Lebedev ◽  
N.S. Polosukhina

SummaryThe magnetic variable star 21 Per has been studied from 4 and 8 Å/mm spectra obtained with the 2.6 - meter reflector of the Crimean Astrophysical Observatory. Spectral line intensities (Wλ) and radial velocities (Vr) have been measured.


Author(s):  
Chen Liqing ◽  
Liu Zuqin ◽  
Zhang Wei

Valence state analyses of Fe and Mn in oxides by EPMA have been reported in literature. In this paper, the effects of valence state on intensity ratios ILα/IKα and ILα/ILβ of Cu, Ni, Co, Fe, Mn, Cr and their oxides, and on intensity ratios ILβ2/ILα1 and ILγ1/ILα1 of Mo, Nb, Zr and their oxides were studied. It was observed that intensity ratios change with valence states in accordance with some regularities, and these effects could be utilized for analyzing the valence states of catalysts.Valence state analysis of elements by EPMA is based on the fact that changes in the states of valence electrons in the outer shells of an atom cause corresponding changes in line intensities. The M electrons of Cu, Ni, Co, Fe, Mn, Cr and the N electrons of Mo, Nb, Zr are valence electrons. Line Kα1,2 and six lines of L are produced from the transitions of K-L2,3 and L-M or L-N respectively.


Author(s):  
C. C. Ahn ◽  
D. H. Pearson ◽  
P. Rez ◽  
B. Fultz

Previous experimental measurements of the total white line intensities from L2,3 energy loss spectra of 3d transition metals reported a linear dependence of the white line intensity on 3d occupancy. These results are inconsistent, however, with behavior inferred from relativistic one electron Dirac-Fock calculations, which show an initial increase followed by a decrease of total white line intensity across the 3d series. This inconsistency with experimental data is especially puzzling in light of work by Thole, et al., which successfully calculates x-ray absorption spectra of the lanthanide M4,5 white lines by employing a less rigorous Hartree-Fock calculation with relativistic corrections based on the work of Cowan. When restricted to transitions allowed by dipole selection rules, the calculated spectra of the lanthanide M4,5 white lines show a decreasing intensity as a function of Z that was consistent with the available experimental data.Here we report the results of Dirac-Fock calculations of the L2,3 white lines of the 3d and 4d elements, and compare the results to the experimental work of Pearson et al. In a previous study, similar calculations helped to account for the non-statistical behavior of L3/L2 ratios of the 3d metals. We assumed that all metals had a single 4s electron. Because these calculations provide absolute transition probabilities, to compare the calculated white line intensities to the experimental data, we normalized the calculated intensities to the intensity of the continuum above the L3 edges. The continuum intensity was obtained by Hartree-Slater calculations, and the normalization factor for the white line intensities was the integrated intensity in an energy window of fixed width and position above the L3 edge of each element.


2004 ◽  
Vol 76 (1) ◽  
pp. 147-155 ◽  
Author(s):  
M. Musso ◽  
F. Matthai ◽  
D. Keutel ◽  
K.-L. Oehme

Isotropic Raman line shapes of simple molecular fluids exhibit critical line broadening near their respective liquid-gas critical points. In order to observe this phenomenon, it is essential that the band position of a given vibrational mode is density-dependent, and that vibrational depopulation processes negligibly contribute to line broadening. Special attention was given to the fact that the isotropic (i.e., nonrotationally broadened) line shape of liquid N2 is affected by resonant intermolecular vibrational interactions between identical oscillators. By means of the well-chosen isotopic mixture (14N2).975 - (14N15N).025, the temperature and density dependences of shift, width, and asymmetry of the resonantly coupled 14N2 and, depending on the S/N ratio available, of the resonantly uncoupled 14N15N were determined, with up to milli-Kelvin resolution, in the coexisting liquid and gas phases and along the critical isochore, using a highest-resolution double monochromator and modern charge-coupled device detection techniques. Clear evidence was found that vibrational resonance couplings are present in all dense phases studied.


1998 ◽  
Vol 11 (1) ◽  
pp. 363-363
Author(s):  
Johanna Jurcsik ◽  
Benjamin Montesinos

FG Sagittae is one of the most important key objects of post-AGB stellar evolutionary studies. As a consequence of a final helium shell flash, this unique variable has shown real evolutionary changes on human time scales during this century. The observational history was reviewed in comparison with predictions from evolutionary models. The central star of the old planetary nebula (Hel-5) evolved from left to right in the HR diagram, going in just hundred years from the hot region of exciting sources of planetary nebulae to the cool red supergiant domain just before our eyes becoming a newly-born post-AGB star. The effective temperature of the star was around 50,000 K at the beginning of this century, and the last estimates in the late 1980s give 5,000-6,500 K. Recent spectroscopic observations obtained by Ingemar Lundström show definite changes in the nebular line intensities. This fact undoubtedly rules out the possibility that, instead of FG Sge, a hidden hot object would be the true central star of the nebula. Consequently, the observed evolutionary changes are connected with the evolution of a single star.


2009 ◽  
Vol 110 (18) ◽  
pp. 2102-2114 ◽  
Author(s):  
L. Gomez ◽  
D. Jacquemart ◽  
N. Lacome ◽  
J.-Y. Mandin

Sign in / Sign up

Export Citation Format

Share Document