band position
Recently Published Documents


TOTAL DOCUMENTS

147
(FIVE YEARS 37)

H-INDEX

23
(FIVE YEARS 4)

Author(s):  
EMAN M. A. ◽  
SHERIF S. M. ◽  
SAHAR A. M. ◽  
AHLAM M. I. ◽  
GEHAN M. K.

Objective: The study aimed to investigate the structural and conformational changes induced by short-term administration of the amiodarone in the optic nerve besides validating whether vitamin E coadministration with amiodarone will improve these changes. Methods: Thirty New Zealand white rabbits from both sexes were haphazardly categorized into three groups, whereas each group contains ten rabbits (20 eyes). One of these groups served as a control that received an intraperitoneal injection of normal saline. Rabbits in the second group intraperitoneally (ip) injected daily with 160 mg/kg body weight (bw) of amiodarone for two weeks. The last group orally administration 100 mg/kg bw of vitamin E with the 160 mg/kg bw of amiodarone ip daily for two weeks until the time of sacrifice. Fourier transform infrared spectroscopy (FTIR) analysis was conducted on the optic nerve of the all groups. Results: The results obtained from the FTIR spectrum revealed that the short-term administration of amiodarone caused a significant alteration in the stretching NH-OH region. A newly detected component centered at 3739±1 cm-1 was assigned as strO-H. There was a significant decrease (p˂0.05) in the bandwidth and band position of one component of strO-H that centered at 3598±1 cm-1. Moreover, remaining vibrational bands (O-Hasym and O-Hsym) were shifted to higher frequencies. Coadministration of vitamin E with amiodarone reduced the contour to four components as a control with significant increase in the band position of O-Hasym and the bandwidth of one component of str O-H. Amiodarone administrations lead to reducing the area ratio of asymCH2 to symCH2 and elevation of the area ratio of asymCH2 to asymCH3 while the coadministration of vitamin E returned it as the control ratio. The percentage of the β-turn was significantly increased while the α-helix content was decreased due to amiodarone. The contents of both components were considered mimicking the control values when Vitamin E was co-administered with amiodarone. Conclusion: The study stated that amiodarone could change the solubility and folding of the optic nerve proteins. Finally, vitamin E intake with amiodarone turns many of these changes induced by amiodarone to normal levels, which make it a good supplement for amiodarone users.


Author(s):  
Ye Cao ◽  
Yan Gong ◽  
Zhenya Zheng ◽  
Chun Xu

Abstract The China Space Station Telescope (CSST) photometric survey aims to perform a high spatial resolution (~0.15'') photometric imaging for the targets that cover a large sky area (~17,500 deg^2) and wide wavelength range (from NUV to NIR). It expects to explore the properties of dark matter, dark energy, and other important cosmological and astronomical areas. In this work, we evaluate whether the filter design of the Multi-channel Imager (MCI), one of the five instruments of the CSST, can provide accurate photometric redshift (photo-$z$) measurements with its nine medium-band filters to meet the relevant scientific objectives. We generate the mock data based on the COSMOS photometric redshift catalog with astrophysical and instrumental effects. The application of upper limit information of low signal-to-noise ratio (SNR) data is adopted in the estimation of photo-z. We investigate the dependency of photo-z accuracy on the filter parameters, such as band position and width. We find that the current MCI filter design can achieve good photo-z measurements with accuracy sigma_z~0.017 and outlier fraction f_c~2.2%. It can effectively improve the photo-z measurements of the main CSST survey using the Survey Camera (SC) to an accuracy sigma_z~0.015 and outlier fraction f_c~1.5%. It indicates that the original MCI filters are proper for the photo-z calibration.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chao Ye ◽  
Huanyu Jin ◽  
Jieqiong Shan ◽  
Yan Jiao ◽  
Huan Li ◽  
...  

AbstractMetal sulfides electrodeposition in sulfur cathodes mitigates the shuttle effect of polysulfides to achieve high Coulombic efficiency in secondary metal-sulfur batteries. However, fundamental understanding of metal sulfides electrodeposition and kinetics mechanism remains limited. Here using room-temperature sodium-sulfur cells as a model system, we report a Mo5N6 cathode material that enables efficient Na2S electrodeposition to achieve an initial discharge capacity of 512 mAh g−1 at a specific current of 1 675 mA g−1, and a final discharge capacity of 186 mAh g−1 after 10,000 cycles. Combined analyses from synchrotron-based spectroscopic characterizations, electrochemical kinetics measurements and density functional theory computations confirm that the high d-band position results in a low Na2S2 dissociation free energy for Mo5N6. This promotes Na2S electrodeposition, and thereby favours long-term cell cycling performance.


2021 ◽  
Vol 923 (2) ◽  
pp. 202
Author(s):  
A. Ricca ◽  
C. Boersma ◽  
E. Peeters

Abstract This study revisits the role that nitrogen inclusion in polycyclic aromatic hydrocarbons (PAHs; those with nitrogen inclusion, PANHs) plays in their infrared (IR) spectral properties. We present spectra of pure PAHs, PANHs, and protonated PANHs, computed using density functional theory and basis sets that treat polarization. We investigate trends in peak position and relative intensities as a function of nitrogen position, charge, and geometry. We use Spitzer-IRS spectral map data of the northwest photodissociation region of NGC 7023 and a database-fitting approach, using exclusively the PA(N)H spectra computed in this paper, to assess their IR contribution to the cosmic PAH emission. We find that, by including the treatment of polarization, pure PAH cations can account for the class A 6.2 μm PAH emission, with the 6.2 μm band position being dependent on the molecular geometry. PANH cations are required to reproduce the most blueshifted 6.2 μm bands observed in class A sources, albeit PANH cations come with strong 11.0 μm emission. Blind database fits demonstrate that the restriction imposed by the 11.0 μm emission in the astronomical spectra limits the contribution of PANH cations and the fits have to use neutral PANHs to avoid inflating the 11.0 μm feature even further. By assuming that all of the 11.0 μm emission is due to PANHs, we derive an upper limit for the contribution of PANH cations to the astronomical 6.2 μm PAH band of ∼12%. The fits further show hydrogenated PANHs significantly contributing in NGC 7023's more benign region, supporting the view that shielded environments could sustain protonated PA(N)Hs.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2940
Author(s):  
Bingke Zhang ◽  
Shengwen Fu ◽  
Dongbo Wang ◽  
Shujie Jiao ◽  
Zhi Zeng ◽  
...  

The photocatalysis technique has been proven to be a promising method to solve environmental pollution in situations of energy shortage, and has been intensively investigated in the field of pollutant degradation. In this work, a band structure-controlled solid solution of BiOBrXI1−X (x = 0.00, 0.05, 0.10, 0.15, 0.20, 1.00) with highly efficient light-driven photocatalytic activities was successfully synthesized via simple solvothermal methods. The phase composition, crystal structure, morphology, internal molecular vibration, optical properties, and energy band structure were characterized and analyzed by XRD, SEM, HRTEM, XPS, Raman, and UV Vis DRS. To evaluate the photocatalytic activity of BiOBrXI1−X, rhodamine B was selected as an organic pollutant. In particular, BiOBr0.15I0.85 displayed significantly enhanced photocatalytic activity by virtue of modulating the energy band position, optimizing redox potentials, and accelerating carrier separation. Moreover, the enhancement mechanism was elucidated on the basis of band structure engineering, which provides ideas for the design of highly active photocatalysts for practical application in the fields of environmental issues and energy conservation.


Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4790
Author(s):  
Ashley E. Williams ◽  
Nathan I. Hammer ◽  
Ryan C. Fortenberry ◽  
Dana N. Reinemann

The E-hook of β-tubulin plays instrumental roles in cytoskeletal regulation and function. The last six C-terminal residues of the βII isotype, a peptide of amino acid sequence EGEDEA, extend from the microtubule surface and have eluded characterization with classic X-ray crystallographic techniques. The band position of the characteristic amide I vibration of small peptide fragments is heavily dependent on the length of the peptide chain, the extent of intramolecular hydrogen bonding, and the overall polarity of the fragment. The dependence of the E residue’s amide I ν(C=O) and the αCOO− terminal ν(C=O) bands on the neighboring side chain, the length of the peptide fragment, and the extent of intramolecular hydrogen bonding in the structure are investigated here via the EGEDEA peptide. The hexapeptide is broken down into fragments increasing in size from dipeptides to hexapeptides, including EG, ED, EA, EGE, EDE, DEA, EGED, EDEA, EGEDE, GEDEA, and, finally, EGEDEA, which are investigated with experimental Raman spectroscopy and density functional theory (DFT) computations to model the zwitterionic crystalline solids (in vacuo). The molecular geometries and Boltzmann sum of the simulated Raman spectra for a set of energetic minima corresponding to each peptide fragment are computed with full geometry optimizations and corresponding harmonic vibrational frequency computations at the B3LYP/6-311++G(2df,2pd) level of theory. In absence of the crystal structure, geometry sampling is performed to approximate solid phase behavior. Natural bond order (NBO) analyses are performed on each energetic minimum to quantify the magnitude of the intramolecular hydrogen bonds. The extent of the intramolecular charge transfer is dependent on the overall polarity of the fragment considered, with larger and more polar fragments exhibiting the greatest extent of intramolecular charge transfer. A steady blue shift arises when considering the amide I band position moving linearly from ED to EDE to EDEA to GEDEA and, finally, to EGEDEA. However, little variation is observed in the αCOO− ν(C=O) band position in this family of fragments.


2021 ◽  
Vol 02 ◽  
Author(s):  
Yimeng Cao ◽  
Chuhong Zhu ◽  
Taotao Wang ◽  
Daochuan Jiang ◽  
Sheng Ye

: Photocatalytic water splitting for hydrogen production is a promising pathway for solar energy convention into chemicals. Among various semiconductor-based photocatalysts, cadmium sulfide (CdS) attracted extensive attentions due to the narrow band gap nature (2.4 eV) for efficient visible light absorption, suitable band position for water splitting, and outstanding photocatalytic activity. In this review, we summarize the recent advances for the synthesis of CdS, and modification strategies including heteroatom doping, loading cocatalysts, and hetero/homo-junction fabrication are also presented. Moreover, a brief perspective and challenges on CdS-based photocatalyst are also discussed.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Talat Zeeshan ◽  
Safia Anjum ◽  
Salma Waseem ◽  
Farzana Majid ◽  
Muhammad Danish Ali ◽  
...  

Abstract The polycrystalline Co1−xZnxCr0.5Fe1.5O4 series with (x = 0, 0.2, 0.4, 0.6, 0.8, 1.0) has been synthesized by conventional ceramic rout method. The structural and elastic properties have been investigated by X-ray diffractometer and Fourier transform spectroscopy. Both XRD and FTIR confirm the formation of single phase cubic spinel ferrites. The cationic distribution for all samples has been proposed. The lattice parameter, X-ray density, hoping length, bond length, and packing factors–in accompaniment with variations in the zinc concentration–have been studied. The IR band position has been explained by the cations involved in the structure. The elastic moduli such as Young's modulus, bulk modulus, rigidity modulus and Poison's ratio have bee calculated using force constants. Scanning electron microscope (SEM) observation conveys information about the agglomeration of particles. The hysteresis curve obtained from vibrating sample magneto meter (VSM) conveys information about the soft nature of prepared compositions. The saturation magnetization decreases with addition of zinc ions and coercivity is almost zero. An increase in band gap energy has been observed with addition of zinc by Ultraviolet Visible Spectroscopy (UV-VIS), which is due to small crystallite size.


2021 ◽  
Author(s):  
Hema . ◽  
Tara Bhatt ◽  
Pratibha Arya ◽  
Charu Ch. Dhondiyal ◽  
Himani Tiwari ◽  
...  

Abstract The structural study of the non-covalent interactions in the ternary mixture of benzylamine (BA), ethanol and benzene have been attempted through Density Functional Theory (DFT) calculation. The optimized structure of monomers (BA, ethanol and benzene), BA dimer and their complexes (BA-benzene, BA-ethanol, BA-ethanol-benzene) and their interaction energy is used to describe the intermolecular interaction between the molecules. In addition to conventional H-bonding, the stability of the system is found to depend on several other interactions such as CH/π, NH/π, OH/π interaction. The Fourier Transform InfraRed (FTIR) spectroscopy technique is also used to study molecular interaction. An interpretation of the IR stretching bands based on the interactions is also provided. The variation in IR band position and intensity of spectra with change in concentration of the mixture shows that different kinds of interactions are presented in the mixture. The strength of these interactions varies with concentration. At lower concentration (x1=0.0), weak OH/π interaction between benzene and ethanol takes place while at other mole fraction N-H-----O, O-H------N, NH/π interaction is present between molecules.


Sign in / Sign up

Export Citation Format

Share Document