Three-wave interaction among plasmons in a weakly coupled quasi-two-dimensional Fermi gas: Down-conversion of high-power terahertz radiation

2000 ◽  
Vol 62 (11) ◽  
pp. 7440-7453
Author(s):  
J. P. Mondt ◽  
Hyun-Tak Kim ◽  
Kwang-Yong Kang
Author(s):  
Yunping Wu ◽  
Wei Wei ◽  
Tianyi Ding ◽  
Sheng Chen ◽  
Rui Zhai ◽  
...  

Two-dimensional (2D) heterostructures combine the advantageous features of different 2D materials and represent advanced electrode architectures for development of efficient energy storage devices. However, the common 2D heterostructures made by...


Author(s):  
Eun-Cheol Lee ◽  
Zhihai Liu

Recently, Ruddlesden–Popper two-dimensional (2D) perovskite solar cells (PSCs) have been intensively studied, owing to their high power conversion efficiency (PCE) and excellent long-term stability. In this work, we improved the...


2001 ◽  
Vol 17 (1) ◽  
pp. 39-47
Author(s):  
San-Yin Lin ◽  
Sheng-Chang Shih ◽  
Jen-Jiun Hu

ABSTRACTAn upwind finite-volume scheme is studied for solving the solutions of two dimensional Euler equations. It based on the MUSCL (Monotone Upstream Scheme for Conservation Laws) approach with the Roe approximate Riemann solver for the numerical flux evaluation. First, dissipation and dispersion relation, and group velocity of the scheme are derived to analyze the capability of the proposed scheme for capturing physical waves, such as acoustic, entropy, and vorticity waves. Then the scheme is greatly enhanced through a strategy on the numerical dissipation to effectively handle aeroacoustic computations. The numerical results indicate that the numerical dissipation strategy allows that the scheme simulates the continuous waves, such as sound and sine waves, at fourth-order accuracy and captures the discontinuous waves, such a shock wave, sharply as well as most of upwind schemes do. The tested problems include linear wave convection, propagation of a sine-wave packet, propagation of discontinuous and sine waves, shock and sine wave interaction, propagation of acoustic, vorticity, and density pulses in an uniform freestream, and two-dimensional traveling vortex in a low-speed freestream.


Sign in / Sign up

Export Citation Format

Share Document