scholarly journals Superconducting transition temperatures and coherence length in non-s-wave pairing materials correlated with spin-fluctuation mediated interaction

2002 ◽  
Vol 65 (9) ◽  
Author(s):  
G. G. N. Angilella ◽  
N. H. March ◽  
R. Pucci
2000 ◽  
Vol 62 (21) ◽  
pp. 13919-13921 ◽  
Author(s):  
G. G. N. Angilella ◽  
N. H. March ◽  
R. Pucci

2012 ◽  
Vol 1444 ◽  
Author(s):  
S. Kambe ◽  
H. Sakai ◽  
Y. Tokunaga

ABSTRACTIn d-wave unconventional superconductors, superconducting Cooper pairs are believed to be formed via magnetic fluctuations. In fact, the superconducting transition temperature Tc roughly correlates with the antiferromagnetic spin fluctuation energy in d-wave unconventional superconductors including high Tc cuprates. In addition to this correlation, the superconducting pairing symmetry and the magnetic anisotropy of the normal state are found empirically to be strongly correlated in f-electron unconventional superconductors having crystallographic symmetry lower than cubic. In antiferromagnetic systems, unconventional superconductivity appears with singlet (d-wave) pairing for cases of XY anisotropy. In contrast, in ferromagnetic systems, unconventional superconductivity with triplet (e.g. p-wave) pairing appears for cases of Ising anisotropy. In this report, the d-wave case is addressed, the origin of XY anisotropy is discussed in terms of the orbital character; and the angular momentum character jz for each piece of Fermi surfaces is determined.


2021 ◽  
Author(s):  
Ma-Hsuan Ma ◽  
Erdembayalag Batsaikhan ◽  
Huang-Nan Chen ◽  
Ting-Yang Chen ◽  
Chi-Hung Lee ◽  
...  

Abstract We report on experimental evidence of non-s-wave pairing in In and Sn nanoparticle assemblies. Spontaneous magnetizations are observed, through extremely weak-field magnetization and neutron-diffraction measurements, to develop when the nanoparticles enter the superconducting state. The superconducting transition temperature TC shifts to a noticeably higher temperature when an external magnetic field or magnetic Ni nanoparticles are introduced into the vicinity of the superconducting In or Sn nanoparticles. There is a critical magnetic field and a critical Ni composition that must be reached before the magnetic environment will suppress the superconductivity. Development of spin-parallel superconducting pairs on the surfaces and spin-antiparallel superconducting pairs in the core of the nanoparticles is used to understand the observations.


2019 ◽  
Vol 7 (9) ◽  
pp. 2589-2595 ◽  
Author(s):  
Luo Yan ◽  
Tao Bo ◽  
Peng-Fei Liu ◽  
Bao-Tian Wang ◽  
Yong-Guang Xiao ◽  
...  

We predict two new molybdenum boride monolayers as phonon-mediated superconductors with superconducting transition temperatures of 3.9 and 0.2 K.


2003 ◽  
Vol 17 (27n28) ◽  
pp. 1453-1460
Author(s):  
ILEANA LUPSA

The magnetic properties of U 1-x Dy x Al y Ni 5-y (y=0,1) systems were investigated in the 2(5)–600 K temperature range and for fields up to 80 kOe. The systems having x≥0.2 are magnetically ordered with low transition temperatures and magnetization mainly due to the Dy contribution. The nickel exhibits magnetic moments, very weak in the low temperature range and well-defined effective moments over transition temperatures. The nickel behavior is discussed in terms of the spin fluctuation model.


Sign in / Sign up

Export Citation Format

Share Document