Quantum coherence and decoherence of correlated electron states in the one-dimensional charge-density-wave–spin-density-wave phase transition

2006 ◽  
Vol 73 (11) ◽  
Author(s):  
Norikazu Tomita
2010 ◽  
Vol 24 (32) ◽  
pp. 6307-6322 ◽  
Author(s):  
HANQIN DING ◽  
YANSHEN WANG

By using the bosonization approach and the renormalization group (RG) technique, we study the half-filled band one-dimensional t–U–J model with additional on-bond repulsion (W>0) in the weak-coupling regime. The presence of on-bond repulsion is responsible for realization of a metallic phase in the system, and the phase diagram is strongly controlled by the symmetry of the model. By analyzing the RG flow diagram and comparing order parameters, the phase boundaries are determined and the structure of the phase diagram is clarified. In the case of SU (2) ⊗ SU (2) symmetry, the phase diagram consists of a metallic phase characterized by a Luttinger liquid (LL) and two insulting phases characterized by the degenerate spin-density-wave (SDW) and the bond-charge-density-wave (BCDW). In the SU (2) ⊗ U(1)-symmetric case, the phase diagram contains two metallic phases: a LL and a Luther–Emery phase, and three insulating phases: the transverse SDW ( SDW ±), the longitudinal SDW ( SDW z) and the dimerized BCDW. The insulating charge-density-wave and bond-spin-density-wave (BSDW) phases are always suppressed in the ground state. In addition, the system show a long-ranged order in the BCDW and SDW z phases.


2020 ◽  
Vol 101 (3) ◽  
Author(s):  
Jan Stolpp ◽  
Jacek Herbrych ◽  
Florian Dorfner ◽  
Elbio Dagotto ◽  
Fabian Heidrich-Meisner

2014 ◽  
Vol 83 (4) ◽  
pp. 044715 ◽  
Author(s):  
Shoichi Tomiyoshi ◽  
Hiroyuki Ohsumi ◽  
Hisao Kobayashi ◽  
Akiji Yamamoto

2002 ◽  
Vol 12 (9) ◽  
pp. 323-324
Author(s):  
D. Le Bolloc'h ◽  
S. Ravy ◽  
P. Senzier ◽  
C. Pasquier ◽  
C. Detlefs

The correlation length of the charge density wave ordering in Rb0.3, MoO, has been studied by x-ray diffraction under electric field applied along the one-dimensional axis. The (10, 0.25, -5.5) satellite reflection has been measured in 3D, using high Q-resolution available at the ESRF. Under electrical field, the satellite reaches two stable positions depending on the temperature. It can switch from one to another as a function of the temperature and the current with very long relaxation times ($\rm 10^{th}$ of minutes). After several cycling with T and E, the satellite reflection is found to shift in the 3 main directions. The width of the satellite is reduced by a factor of two in the k-direction and an increase of the transverse correlation length is observed in the two others: the ordered domains look elongated, reaching until 5000 Å in the direction of the applied field and around 1OOO Å, in the perpendicular directions.


Sign in / Sign up

Export Citation Format

Share Document