Coexistent States of Charge Density Wave and Spin Density Wave in the One-Dimensional Extended Hubbard Model for the Arbitrary Electron Filling

2001 ◽  
Vol 70 (3) ◽  
pp. 784-788
Author(s):  
Keita Kishigi
Science ◽  
2019 ◽  
Vol 365 (6460) ◽  
pp. 1424-1428 ◽  
Author(s):  
Hong-Chen Jiang ◽  
Thomas P. Devereaux

The Hubbard model is widely believed to contain the essential ingredients of high-temperature superconductivity. However, proving definitively that the model supports superconductivity is challenging. Here, we report a large-scale density matrix renormalization group study of the lightly doped Hubbard model on four-leg cylinders at hole doping concentration δ = 12.5%. We reveal a delicate interplay between superconductivity and charge density wave and spin density wave orders tunable via next-nearest neighbor hopping t′. For finite t′, the ground state is consistent with a Luther-Emery liquid with power-law superconducting and charge density wave correlations associated with half-filled charge stripes. In contrast, for t′ = 0, superconducting correlations fall off exponentially, whereas charge density and spin density modulations are dominant. Our results indicate that a route to robust long-range superconductivity involves destabilizing insulating charge stripes in the doped Hubbard model.


2010 ◽  
Vol 24 (32) ◽  
pp. 6307-6322 ◽  
Author(s):  
HANQIN DING ◽  
YANSHEN WANG

By using the bosonization approach and the renormalization group (RG) technique, we study the half-filled band one-dimensional t–U–J model with additional on-bond repulsion (W>0) in the weak-coupling regime. The presence of on-bond repulsion is responsible for realization of a metallic phase in the system, and the phase diagram is strongly controlled by the symmetry of the model. By analyzing the RG flow diagram and comparing order parameters, the phase boundaries are determined and the structure of the phase diagram is clarified. In the case of SU (2) ⊗ SU (2) symmetry, the phase diagram consists of a metallic phase characterized by a Luttinger liquid (LL) and two insulting phases characterized by the degenerate spin-density-wave (SDW) and the bond-charge-density-wave (BCDW). In the SU (2) ⊗ U(1)-symmetric case, the phase diagram contains two metallic phases: a LL and a Luther–Emery phase, and three insulating phases: the transverse SDW ( SDW ±), the longitudinal SDW ( SDW z) and the dimerized BCDW. The insulating charge-density-wave and bond-spin-density-wave (BSDW) phases are always suppressed in the ground state. In addition, the system show a long-ranged order in the BCDW and SDW z phases.


2020 ◽  
Vol 101 (3) ◽  
Author(s):  
Jan Stolpp ◽  
Jacek Herbrych ◽  
Florian Dorfner ◽  
Elbio Dagotto ◽  
Fabian Heidrich-Meisner

Sign in / Sign up

Export Citation Format

Share Document