scholarly journals Influence of correlation effects on the magneto-optical properties of the half-metallic ferromagnet NiMnSb

2006 ◽  
Vol 74 (14) ◽  
Author(s):  
S. Chadov ◽  
J. Minár ◽  
H. Ebert ◽  
A. Perlov ◽  
L. Chioncel ◽  
...  
2010 ◽  
Vol 84 (6) ◽  
pp. 717-721 ◽  
Author(s):  
Dibya Prakash Rai ◽  
Javad Hashemifar ◽  
Morteeza Jamal ◽  
Lalmuanpuia ◽  
M. P. Ghimire ◽  
...  

2008 ◽  
Vol 255 (3) ◽  
pp. 685-687 ◽  
Author(s):  
R. Tetean ◽  
L. Chioncel ◽  
E. Burzo ◽  
N. Bucur ◽  
A. Bezergheanu ◽  
...  

Author(s):  
Khodja Djamila ◽  
Djaafri Tayeb ◽  
Djaafri Abdelkader ◽  
Bendjedid Aicha ◽  
Hamada Khelifa ◽  
...  

The investigations of the strain effects on magnetism, elasticity, electronic, optical and thermodynamic properties of PdVTe half-Heusler alloy are carried out using the most accurate methods to electronic band structure, i.e. the full-potential linearized augmented plane wave plus a local orbital (FP-LAPW + lo) approach. The analysis of the band structures and the density of states reveals the Half-metallic behavior with a small indirect band gap Eg of 0.51 eV around the Fermi level for the minority spin channels. The study of magnetic properties led to the predicted value of total magnetic moment µtot = 3µB, which nicely follows the Slater–Pauling rule µtot = Zt -18. Several optical properties are calculated for the first time and the predicted values are in line with the Penn model. It is shown from the imaginary part of the complex dielectric function that the investigated alloy is optically metallic. The variations of thermodynamic parameters calculated using the quasi-harmonic Debye model, accord well with the results predicted by the Debye theory. Moreover, the dynamical stability of the investigated alloy is computed by means of the phonon dispersion curves, the density of states, and the formation energies. Finally, the analysis of the strain effects reveals that PdVTe alloy preserves its ferromagnetic half metallic behavior, it remains mechanically stable, the ionic nature dominates the atomic bonding, and the thermodynamic and the optical properties keep the same features in a large interval of pressure.


2018 ◽  
Vol 8 (11) ◽  
pp. 2200 ◽  
Author(s):  
Yu Feng ◽  
Zhou Cui ◽  
Ming-sheng Wei ◽  
Bo Wu ◽  
Sikander Azam

Employing first-principle calculations, we investigated the influence of the impurity, Fe atom, on magnetism and electronic structures of Heusler compound Ti2CoSi, which is a spin gapless semiconductor (SGS). When the impurity, Fe atom, intervened, Ti2CoSi lost its SGS property. As TiA atoms (which locate at (0, 0, 0) site) are completely occupied by Fe, the compound converts to half-metallic ferromagnet (HMF) TiFeCoSi. During this SGS→HMF transition, the total magnetic moment linearly decreases as Fe concentration increases, following the Slate–Pauling rule well. When all Co atoms are substituted by Fe, the compound converts to nonmagnetic semiconductor Fe2TiSi. During this HMF→nonmagnetic semiconductor transition, when Fe concentration y ranges from y = 0.125 to y = 0.625, the magnetic moment of Fe atom is positive and linearly decreases, while those of impurity Fe and TiB (which locate at (0.25, 0.25, 0.25) site) are negative and linearly increase. When the impurity Fe concentration reaches up to y = 1, the magnetic moments of Ti, Fe, and Si return to zero, and the compound is a nonmagnetic semiconductor.


2017 ◽  
Vol 31 (14) ◽  
pp. 1750109 ◽  
Author(s):  
Heidar Khosravi ◽  
Arash Boochani ◽  
Golnaz Rasolian ◽  
Shahram Solaymani ◽  
Sirvan Naderi

First-principles study of elastic, electronic and optical properties of full-Heusler Co2V(Al, Ge, Ga and Si) compounds are calculated through density functional theory (DFT) to obtain and compare the mentioned properties. Equilibrium lattice constants of these compounds are in good agreement with other works. Electronic calculations are shown full spin polarization at Fermi level for all compounds, so in the down spin, indirect bandgap is calculated as 0.33, 0.6, 0.2 and 0.8 eV for Co2V(Al, Ge, Ga and Si), respectively. The integer amounts of the magnetic moments are compatible with Slater–Pauling role. The optical treatment of Co2VGa is different from three other compounds. All mentioned compounds have metallic behavior by 22 eV plasmonic frequency. The imaginary part of the dielectric function for the up spin indicates that the main optical transitions occurred in this spin mode. Moreover, the elastic results show that the Co2VGa does not have elastic stability, but the other three compounds have fully elastic stability and the Co2V(Al, Ge and Si) belong to the hardness of materials.


2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Qi Wang ◽  
Yuanfeng Xu ◽  
Rui Lou ◽  
Zhonghao Liu ◽  
Man Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document