scholarly journals Spin Gapless Semiconductor–Nonmagnetic Semiconductor Transitions in Fe-Doped Ti2CoSi: First-Principle Calculations

2018 ◽  
Vol 8 (11) ◽  
pp. 2200 ◽  
Author(s):  
Yu Feng ◽  
Zhou Cui ◽  
Ming-sheng Wei ◽  
Bo Wu ◽  
Sikander Azam

Employing first-principle calculations, we investigated the influence of the impurity, Fe atom, on magnetism and electronic structures of Heusler compound Ti2CoSi, which is a spin gapless semiconductor (SGS). When the impurity, Fe atom, intervened, Ti2CoSi lost its SGS property. As TiA atoms (which locate at (0, 0, 0) site) are completely occupied by Fe, the compound converts to half-metallic ferromagnet (HMF) TiFeCoSi. During this SGS→HMF transition, the total magnetic moment linearly decreases as Fe concentration increases, following the Slate–Pauling rule well. When all Co atoms are substituted by Fe, the compound converts to nonmagnetic semiconductor Fe2TiSi. During this HMF→nonmagnetic semiconductor transition, when Fe concentration y ranges from y = 0.125 to y = 0.625, the magnetic moment of Fe atom is positive and linearly decreases, while those of impurity Fe and TiB (which locate at (0.25, 0.25, 0.25) site) are negative and linearly increase. When the impurity Fe concentration reaches up to y = 1, the magnetic moments of Ti, Fe, and Si return to zero, and the compound is a nonmagnetic semiconductor.

2007 ◽  
Vol 124-126 ◽  
pp. 847-850 ◽  
Author(s):  
Seung Cheol Lee ◽  
Kwang Real Lee ◽  
Kyu Hwan Lee

First principle calculations were performed on the electronic and magnetic structures of the transition metals doped GaN. Seven elements in 3d transition metals from V to Cu were used as a dopant. Magnetic phase was stable compared to non-magnetic phase for all transition metals doped GaN. Total magnetic moments followed Hund’s rule to maximize the magnetic moment. Transition element projected magnetic moments showed that most of magnetic moments were concentrated on transition metals in the cases of V, Cr, and Mn doped GaN, which could not be used for DMS. Since Fe and Ni doped GaNs are intrinsic insulators, Fe and Ni doped GaNs could not be used for DMS materials unless additional dopants are introduced. The most probable candidates for DMS applications were predicted to be Co or Cu doped GaNs, respectively.


2020 ◽  
Vol 34 (15) ◽  
pp. 2050160
Author(s):  
Manfu Wang ◽  
Hualong Tao ◽  
Yao Liang ◽  
Yan Cui ◽  
Shimin Liu ◽  
...  

First-principle calculations were performed to study electronic structures and magnetic properties of V-doped LiZnAs, as well as the effect of Li interstitial. The results showed that the magnetism origin of V-doped LiZnAs could be explained by [Formula: see text]–[Formula: see text] hybridization and the ferromagnetic (FM) state of the system was the ground state. The introduction of Li interstitials increased the distance between V and As atoms, which impaired the hybridization of V-[Formula: see text] and As-[Formula: see text]. As a result, the magnetic moment of V atom increased but the stability of FM coupling between V impurities was weakened.


2014 ◽  
Vol 644-650 ◽  
pp. 4880-4883
Author(s):  
L Zhang ◽  
M.X. Hao ◽  
Y.C. Gao ◽  
X. Gao

We investigate the electronic structure and magnetism of DO3-type Heusler alloys Rh3M (M = Al, Ga, In, Si) using the first-principle calculations. The Rh3Si have been predicted to be half-metallic ferromagent at their equilibrium lattice constants. The effect of lattice parameters on the electronic structure and magnetic properties is also discussed in detail.


2021 ◽  
Author(s):  
Evren Görkem Özdemir ◽  
Semih Doğruer

Abstract The first-principle calculations of PtWZ (Z= In, Tl, Sn, and Pb) half-Heusler alloys were calculated by WIEN2k for GGA and GGA+mBJ methods. First, the ferromagnetic (FM) phases were obtained more energetically stable than non-magnetic (NM) and antiferromagnetic (AFM) phases in each alloy. The Curie temperatures of PtWIn, PtWTl, PtWSn, and PtWPb alloys were obtained as 286.98 K, 467.14 K, 721.98 K, and 1114.31 K, respectively, by utilizing the energy differences of the AFM and FM phases. In each method and alloy used, spin-up electrons showed metallic character. In the GGA method, PtW(In, Tl) alloys have direct band gaps of 0.72044 eV and 0.91488 eV in spin-down electrons, while PtW(Sn, Pb) alloys have indirect band gaps of 1.2558 eV and 1.11892 eV, respectively. In the GGA+mBJ method, the bandgap directions in all compounds remained the same. Here, band gaps in PtW(In, Tl, Sn, and Pb) alloys were obtained as 0.99918 eV, 1.15385 eV, 1.42676 eV, and 1.17497 eV, respectively. While the total magnetic moment values of PtW(In, Tl) half-Heusler alloys were obtained as 1.00 μB/f.u., the total magnetic moments of PtW(Sn, Pb) alloys were obtained as 2.00 μB/f.u. These results are in full agreement with the Slater-Pauling rule. According to elastic calculations, PtWIn, PtWTl, PtWSn, and PtWPb half-Heusler alloys are elastically stable and ductile.


Author(s):  
Muhammad Yar Khan ◽  
Yan Liu ◽  
Tao Wang ◽  
Hu Long ◽  
Miaogen Chen ◽  
...  

AbstractMonolayer MnCX3 metal–carbon trichalcogenides have been investigated by using the first-principle calculations. The compounds show half-metallic ferromagnetic characters. Our results reveal that their electronic and magnetic properties can be altered by applying uniaxial or biaxial strain. By tuning the strength of the external strain, the electronic bandgap and magnetic ordering of the compounds change and result in a phase transition from the half-metallic to the semiconducting phase. Furthermore, the vibrational and thermodynamic stability of the two-dimensional structure has been verified by calculating the phonon dispersion and molecular dynamics. Our study paves guidance for the potential applications of these two mono-layers in the future for spintronics and straintronics devices.


2018 ◽  
Vol 11 (6) ◽  
pp. 061101 ◽  
Author(s):  
Juyeong Kim ◽  
Daisuke Tahara ◽  
Yoshino Miura ◽  
Bog G. Kim

2007 ◽  
Vol 101 (3) ◽  
pp. 033912 ◽  
Author(s):  
Mahesh Chandran ◽  
Luana E. Iorio ◽  
P. R. Subramanian

Sign in / Sign up

Export Citation Format

Share Document