scholarly journals Enhancement and reduction of one-dimensional heat conduction with correlated mass disorder

2014 ◽  
Vol 90 (15) ◽  
Author(s):  
Zhun-Yong Ong ◽  
Gang Zhang
2013 ◽  
Vol 17 (5) ◽  
pp. 1565-1568 ◽  
Author(s):  
Xue-Wei Li ◽  
Ya Li ◽  
Ji-Huan He

In this Open Forum, Liu et al. proved the equivalence between He-Lee 2009 variational principle and that by Tao and Chen (Tao, Z. L., Chen, G. H., Thermal Science, 17(2013), pp. 951-952) for one dimensional heat conduction. We confirm the correction of Liu et al.?s proof, and give a short remark on the history of the semi-inverse method for establishment of a generalized variational principle.


Author(s):  
Ganesh Hegde ◽  
Madhu Gattumane

Improvement in accuracy without sacrificing stability and convergence of the solution to unsteady diffusion heat transfer problems by computational method of enhanced explicit scheme (EES), has been achieved and demonstrated, through transient one dimensional and two dimensional heat conduction. The truncation error induced in the explicit scheme using finite difference technique is eliminated by optimization of partial derivatives in the Taylor series expansion, by application of interface theory developed by the authors. This theory, in its simple terms gives the optimum values to the decision vectors in a redundant linear equation. The time derivatives and the spatial partial derivatives in the transient heat conduction, take the values depending on the time step chosen and grid size assumed. The time correction factor and the space correction factor defined by step sizes govern the accuracy, stability and convergence of EES. The comparison of the results of EES with analytical results, show decreased error as compared to the result of explicit scheme. The paper has an objective of reducing error in the explicit scheme by elimination of truncation error introduced by neglecting the higher order terms in the expansion of the governing function. As the pilot examples of the exercise, the implementation is aimed at solving one-dimensional and two-dimensional problems of transient heat conduction and compared with the results cited in the referred literature.


Author(s):  
Koji Nishi ◽  
Tomoyuki Hatakeyama ◽  
Shinji Nakagawa ◽  
Masaru Ishizuka

The thermal network method has a long history with thermal design of electronic equipment. In particular, a one-dimensional thermal network is useful to know the temperature and heat transfer rate along each heat transfer path. It also saves computation time and/or computation resources to obtain target temperature. However, unlike three-dimensional thermal simulation with fine pitch grids and a three-dimensional thermal network with sufficient numbers of nodes, a traditional one-dimensional thermal network cannot predict the temperature of a microprocessor silicon die hot spot with sufficient accuracy in a three-dimensional domain analysis. Therefore, this paper introduces a one-dimensional thermal network with average temperature nodes. Thermal resistance values need to be obtained to calculate target temperature in a thermal network. For this purpose, thermal resistance calculation methodology with simplified boundary conditions, which calculates thermal resistance values from an analytical solution, is also introduced in this paper. The effectiveness of the methodology is explored with a simple model of the microprocessor system. The calculated result by the methodology is compared to a three-dimensional heat conduction simulation result. It is found that the introduced technique matches the three-dimensional heat conduction simulation result well.


Sign in / Sign up

Export Citation Format

Share Document