scholarly journals Quantum hydrodynamic theory for plasmonics: Impact of the electron density tail

2016 ◽  
Vol 93 (20) ◽  
Author(s):  
Cristian Ciracì ◽  
Fabio Della Sala
Nanophotonics ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1821-1833 ◽  
Author(s):  
Cristian Ciracì ◽  
Radoslaw Jurga ◽  
Muhammad Khalid ◽  
Fabio Della Sala

AbstractCoupling between electromagnetic cavity fields and fluorescent molecules or quantum emitters can be strongly enhanced by reducing the cavity mode volume. Plasmonic structures allow light confinement down to volumes that are only a few cubic nanometers. At such length scales, nonlocal and quantum tunneling effects are expected to influence the emitter interaction with the surface plasmon modes, which unavoidably requires going beyond classical models to accurately describe the electron response at the metal surface. In this context, the quantum hydrodynamic theory (QHT) has emerged as an efficient tool to probe nonlocal and quantum effects in metallic nanostructures. Here, we apply state-of-the-art QHT to investigate the quantum effects on strong coupling of a dipole emitter placed at nanometer distances from metallic particles. A comparison with conventional local response approximation (LRA) and Thomas-Fermi hydrodynamic theory results shows the importance of quantum effects on the plasmon-emitter coupling. The QHT predicts qualitative deviation from LRA in the weak coupling regime that leads to quantitative differences in the strong coupling regime. In nano-gap systems, the inclusion of quantum broadening leads to the existence of an optimal gap size for Rabi splitting that minimizes the requirements on the emitter oscillator strength.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Henrikh M. Baghramyan ◽  
Fabio Della Sala ◽  
Cristian Ciracì

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Yahong Yang ◽  
Ya Zhang ◽  
Lin Yi ◽  
Wei Jiang

The perturbation electron density and stopping power caused by the movement of charged particles above two-dimensional quantum electron gases (2DQEG) have been studied in numerous works using the quantum hydrodynamic (QHD) theory. In this paper, the QHD is modified by introducing the two-dimensional electron exchange-correlation potential at high density V x c 2 DH and the pump wave modulations. Based on the modified QHD, the perturbation electron density and stopping power are calculated for pump waves with various parameters. The results show that the stopping power values are more accurate after considering V x c 2 DH . Under the modulation of pump waves with the wavelength from 0.1 nm to 0.1 cm , the perturbation electron density of 2DQEG and the stopping power of charged particles show periodic changes. Under the modulation of pump waves with λ = 1.76 × 10 − 4 cm and Φ 0 = 2 × 10 10 e / λ f , the average stopping power with respect to the time phase θ becomes negative, which means that the charged particles will gain energy and can be accelerated. This is a new phenomenon in the fields of 2DQEG and of great significance in surface physics and surface modification in nanoelectronic devices with beam matter interactions.


2016 ◽  
Vol 30 (09) ◽  
pp. 1650048 ◽  
Author(s):  
Afshin Moradi

An explicit calculation of the quantum nonlocal (QNL) polarizability of a metallic nanoparticle is presented, where two quantum longitudinal plasma waves are excited. The QNL generalization of the classical Clausius–Mossotti factor of the system is derived, by means of the quantum hydrodynamic theory in conjunction with the Poisson equation and applying the appropriate additional quantum boundary conditions.


2020 ◽  
Vol 5 (4) ◽  
pp. 61
Author(s):  
Artem A. Alexandrov ◽  
Alina U. Badamshina ◽  
Stanislav L. Ogarkov

Here, classical and quantum field theory of dipolar, axisymmetric quadrupolar and octupolar Bose gases is considered within a general approach. Dipole, axisymmetric quadrupole and octupole interaction potentials in the momentum representation are calculated. These results clearly demonstrate attraction and repulsion areas in corresponding gases. Then the Gross–Pitaevskii (GP) equation, which plays a key role in the present paper, is derived from the corresponding functional. The zoology of the form factors appearing in the GP equation is studied in details. The proper classes for the description of spatially non-uniform condensates form factors are chosen. In the Thomas–Fermi approximation a general solution of the GP equation with a quasilocal form factor is obtained. This solution has an interesting form in terms of a double rapidly converging series that universally includes all the interactions considered. Plots of condensate density functions for the exponential-trigonometric form factor are given. For the sake of completeness, in this paper we consider the GP equation with an optical lattice potential in the limit of small condensate densities. This limit does not distinguish between dipolar, quadrupolar and octupolar gases. An important analysis of the condensate stability, in other words the study of condensate excitations, is also performed in this paper. In the Gaussian approximation (from the Gross–Pitaevskii functional), a functional describing the perturbations of the condensate is derived in detail. This problem is an analog of the Bogolubov transformation used in the study of quantum Bose gases in operator formalism. For a probe wave function in the form of a plane wave, a spectrum of (Bogoliubov) excitations was obtained, from which an equation describing the threshold momentum for the emergence of instability was derived. An important result of this paper is the dependence of the threshold on the momentum of a stationary condensate. For completeness of the presentation, the approximating expression in the form of a rapidly converging series is obtained for the corresponding dependence, and plots of the corresponding series for the exponential-trigonometric form factor are given. Finally, in the conclusion a quantum hydrodynamic theory for dipolar, axisymmetric quadrupolar and octupolar gases is briefly presented, giving a clue to the experimental determination of the form factors.


1994 ◽  
Vol 144 ◽  
pp. 82
Author(s):  
E. Hildner

AbstractOver the last twenty years, orbiting coronagraphs have vastly increased the amount of observational material for the whitelight corona. Spanning almost two solar cycles, and augmented by ground-based K-coronameter, emission-line, and eclipse observations, these data allow us to assess,inter alia: the typical and atypical behavior of the corona; how the corona evolves on time scales from minutes to a decade; and (in some respects) the relation between photospheric, coronal, and interplanetary features. This talk will review recent results on these three topics. A remark or two will attempt to relate the whitelight corona between 1.5 and 6 R⊙to the corona seen at lower altitudes in soft X-rays (e.g., with Yohkoh). The whitelight emission depends only on integrated electron density independent of temperature, whereas the soft X-ray emission depends upon the integral of electron density squared times a temperature function. The properties of coronal mass ejections (CMEs) will be reviewed briefly and their relationships to other solar and interplanetary phenomena will be noted.


Sign in / Sign up

Export Citation Format

Share Document