Hanle magnetoresistance: The role of edge spin accumulation and interfacial spin current

2016 ◽  
Vol 94 (17) ◽  
Author(s):  
H. Wu ◽  
X. Zhang ◽  
C. H. Wan ◽  
B. S. Tao ◽  
L. Huang ◽  
...  
2021 ◽  
Vol 118 (23) ◽  
pp. 232401
Author(s):  
Qi Zhang ◽  
Zhuangzhuang Chen ◽  
Huafeng Shi ◽  
Xin Chen ◽  
Abhishek Talapatra ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Haowei Xu ◽  
Hua Wang ◽  
Jian Zhou ◽  
Ju Li

AbstractSpin current generators are critical components for spintronics-based information processing. In this work, we theoretically and computationally investigate the bulk spin photovoltaic (BSPV) effect for creating DC spin current under light illumination. The only requirement for BSPV is inversion symmetry breaking, thus it applies to a broad range of materials and can be readily integrated with existing semiconductor technologies. The BSPV effect is a cousin of the bulk photovoltaic (BPV) effect, whereby a DC charge current is generated under light. Thanks to the different selection rules on spin and charge currents, a pure spin current can be realized if the system possesses mirror symmetry or inversion-mirror symmetry. The mechanism of BSPV and the role of the electronic relaxation time $$\tau$$ τ are also elucidated. We apply our theory to several distinct materials, including monolayer transition metal dichalcogenides, anti-ferromagnetic bilayer MnBi2Te4, and the surface of topological crystalline insulator cubic SnTe.


2005 ◽  
Vol 72 (24) ◽  
Author(s):  
K. Nomura ◽  
J. Wunderlich ◽  
Jairo Sinova ◽  
B. Kaestner ◽  
A. H. MacDonald ◽  
...  

2018 ◽  
Vol 4 (3) ◽  
pp. 36 ◽  
Author(s):  
Anup Kumar ◽  
Prakash Mondal ◽  
Claudio Fontanesi

Magneto-electrochemistry (MEC) is a unique paradigm in science, where electrochemical experiments are carried out as a function of an applied magnetic field, creating a new horizon of potential scientific interest and technological applications. Over time, detailed understanding of this research domain was developed to identify and rationalize the possible effects exerted by a magnetic field on the various microscopic processes occurring in an electrochemical system. Notably, until a few years ago, the role of spin was not taken into account in the field of magneto-electrochemistry. Remarkably, recent experimental studies reveal that electron transmission through chiral molecules is spin selective and this effect has been referred to as the chiral-induced spin selectivity (CISS) effect. Spin-dependent electrochemistry originates from the implementation of the CISS effect in electrochemistry, where the magnetic field is used to obtain spin-polarized currents (using ferromagnetic electrodes) or, conversely, a magnetic field is obtained as the result of spin accumulation.


2011 ◽  
Vol 25 (25) ◽  
pp. 2033-2039
Author(s):  
M. BAGHERI TAGANI ◽  
H. RAHIMPOUR SOLEIMANI

We study spin-dependent transport through a quantum dot with Zeeman split levels coupled to ferromagnetic leads and under influence of microwave irradiation. Current polarization, spin current, spin accumulation and tunneling magnetoresistance are analyzed using nonequilibrium Green's function formalism and rate equations. Spin-dependent beats in spin resolved currents are observed. The effects of magnetic field, temperature and Coulomb interaction on these beats are studied.


2016 ◽  
Vol 93 (22) ◽  
Author(s):  
Guillaume Géranton ◽  
Bernd Zimmermann ◽  
Nguyen H. Long ◽  
Phivos Mavropoulos ◽  
Stefan Blügel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document