scholarly journals Determination of important nuclear fragmentation processes for human space radiation protection

2007 ◽  
Vol 75 (3) ◽  
Author(s):  
Zi-Wei Lin
2013 ◽  
Author(s):  
M. De Napoli ◽  
C. Agodi ◽  
G. Battistoni ◽  
A. A. Blancato ◽  
M. Bondì ◽  
...  

Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1887
Author(s):  
Theodoros Gaitanos

In this article we review the important role of non-equilibrium dynamics in reactions induced by ions and hadron beams to understand the fragmentation processes inside hadronic media. We discuss the single-particle dynamics in specific sources such as spectators in heavy-ion collisions and residual nuclear targets in hadron-induced reactions. Particular attention is given to the dynamics of hyperons. We further discuss the question regarding the onset of local instabilities, which are relevant for the appearance of fragmentation phenomena in nuclear reactions. We apply the theoretical formalism, that is, semi-classical transport embedded with statistical methods of nuclear fragmentation, to reactions induced by light ions and hadron beams. We discuss the results of nuclear fragmentation and, in particular, examine the formation of hypernuclei. Such studies are important for obtaining a deeper understanding of the equation of state in fragmenting matter and are relevant for forthcoming experiments, such as PANDA at FAIR and J-PARC in Japan.


2020 ◽  
Vol 8 ◽  
Author(s):  
John W. Norbury ◽  
Giuseppe Battistoni ◽  
Judith Besuglow ◽  
Luca Bocchini ◽  
Daria Boscolo ◽  
...  

The helium (4He) component of the primary particles in the galactic cosmic ray spectrum makes significant contributions to the total astronaut radiation exposure. 4He ions are also desirable for direct applications in ion therapy. They contribute smaller projectile fragmentation than carbon (12C) ions and smaller lateral beam spreading than protons. Space radiation protection and ion therapy applications need reliable nuclear reaction models and transport codes for energetic particles in matter. Neutrons and light ions (1H, 2H, 3H, 3He, and 4He) are the most important secondary particles produced in space radiation and ion therapy nuclear reactions; these particles penetrate deeply and make large contributions to dose equivalent. Since neutrons and light ions may scatter at large angles, double differential cross sections are required by transport codes that propagate radiation fields through radiation shielding and human tissue. This work will review the importance of 4He projectiles to space radiation and ion therapy, and outline the present status of neutron and light ion production cross section measurements and modeling, with recommendations for future needs.


Sign in / Sign up

Export Citation Format

Share Document