scholarly journals The Role of Nuclear Fragmentation in Particle Therapy and Space Radiation Protection

2016 ◽  
Vol 6 ◽  
Author(s):  
Cary Zeitlin ◽  
Chiara La Tessa
2013 ◽  
Author(s):  
M. De Napoli ◽  
C. Agodi ◽  
G. Battistoni ◽  
A. A. Blancato ◽  
M. Bondì ◽  
...  

2021 ◽  
Vol 22 (14) ◽  
pp. 7713
Author(s):  
Alyssa Tidmore ◽  
Sucharita M. Dutta ◽  
Arriyam S. Fesshaye ◽  
William K. Russell ◽  
Vania D. Duncan ◽  
...  

Exposure of rodents to <20 cGy Space Radiation (SR) impairs performance in several hippocampus-dependent cognitive tasks, including spatial memory. However, there is considerable inter-individual susceptibility to develop SR-induced spatial memory impairment. In this study, a robust label-free mass spectrometry (MS)-based unbiased proteomic profiling approach was used to characterize the composition of the hippocampal proteome in adult male Wistar rats exposed to 15 cGy of 1 GeV/n 48Ti and their sham counterparts. Unique protein signatures were identified in the hippocampal proteome of: (1) sham rats, (2) Ti-exposed rats, (3) Ti-exposed rats that had sham-like spatial memory performance, and (4) Ti-exposed rats that impaired spatial memory performance. Approximately 14% (159) of the proteins detected in hippocampal proteome of sham rats were not detected in the Ti-exposed rats. We explored the possibility that the loss of the Sham-only proteins may arise as a result of SR-induced changes in protein homeostasis. SR-exposure was associated with a switch towards increased pro-ubiquitination proteins from that seen in Sham. These data suggest that the role of the ubiquitin-proteome system as a determinant of SR-induced neurocognitive deficits needs to be more thoroughly investigated.


Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1887
Author(s):  
Theodoros Gaitanos

In this article we review the important role of non-equilibrium dynamics in reactions induced by ions and hadron beams to understand the fragmentation processes inside hadronic media. We discuss the single-particle dynamics in specific sources such as spectators in heavy-ion collisions and residual nuclear targets in hadron-induced reactions. Particular attention is given to the dynamics of hyperons. We further discuss the question regarding the onset of local instabilities, which are relevant for the appearance of fragmentation phenomena in nuclear reactions. We apply the theoretical formalism, that is, semi-classical transport embedded with statistical methods of nuclear fragmentation, to reactions induced by light ions and hadron beams. We discuss the results of nuclear fragmentation and, in particular, examine the formation of hypernuclei. Such studies are important for obtaining a deeper understanding of the equation of state in fragmenting matter and are relevant for forthcoming experiments, such as PANDA at FAIR and J-PARC in Japan.


1999 ◽  
Vol 277 (3) ◽  
pp. F352-F359 ◽  
Author(s):  
Chuan-Ming Hao ◽  
Martin Kömhoff ◽  
Youfei Guan ◽  
Reyadh Redha ◽  
Matthew D. Breyer

Renal medullary interstitial cells (MICs) are a major site of cyclooxygenase (COX)-mediated PG synthesis. These studies examined the role of COX in MIC survival. Immunoblot and nuclease protection demonstrate that cultured MICs constitutively express COX2, with little constitutive COX1 expression. SC-58236, a COX2-selective inhibitor, but not SC-58560, a COX1 inhibitor, preferentially blocks PGE2 synthesis in MICs. Transduction with a COX2 antisense adenovirus reduced MIC COX2 protein expression and also decreased PGE2production. Antisense downregulation of COX2 was associated with MIC death, whereas a control adenovirus was without effect. Similarly, the COX2-selective inhibitor SC-58236 (30 μM) and several nonselective COX-inhibiting nonsteroidal anti-inflammatory drugs (NSAIDs), including sulindac, ibuprofen, and indomethacin, all caused MIC death. In contrast, SC-58560, a COX1-selective inhibitor, was 100-fold less potent for inducing MIC death than its structural congener SC-58236. NSAID-induced MIC death was associated with DNA laddering and nuclear fragmentation, consistent with apoptosis. These results suggest that COX2 plays an important role in MIC survival. COX2 inhibition may contribute to NSAID-associated injury of the renal medulla.


2018 ◽  
Vol 52 ◽  
pp. 18-19
Author(s):  
Giulia Buizza ◽  
Chiara Paganelli ◽  
Giulia Fontana ◽  
Andrea Franconeri ◽  
Maria Vittoria Raciti ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document