Three-body force effect onP3F2neutron superfluidity in neutron matter, neutron star matter, and neutron stars

2008 ◽  
Vol 78 (1) ◽  
Author(s):  
W. Zuo ◽  
C. X. Cui ◽  
U. Lombardo ◽  
H.-J. Schulze
Universe ◽  
2019 ◽  
Vol 5 (10) ◽  
pp. 204 ◽  
Author(s):  
Domenico Logoteta ◽  
Ignazio Bombaci

We discuss the constraints on the equation of state (EOS) of neutron star matter obtained by the data analysis of the neutron star-neutron star merger in the event GW170807. To this scope, we consider two recent microscopic EOS models computed starting from two-body and three-body nuclear interactions derived using chiral perturbation theory. For comparison, we also use three representative phenomenological EOS models derived within the relativistic mean field approach. For each model, we determine the β -stable EOS and then the corresponding neutron star structure by solving the equations of hydrostatic equilibrium in general relativity. In addition, we calculate the tidal deformability parameters for the two neutron stars and discuss the results of our calculations in connection with the constraints obtained from the gravitational wave signal in GW170817. We find that the tidal deformabilities and radii for the binary’s component neutron stars in GW170817, calculated using a recent microscopic EOS model proposed by the present authors, are in very good agreement with those derived by gravitational waves data.


2008 ◽  
Vol 17 (9) ◽  
pp. 3289-3293 ◽  
Author(s):  
Cui Chang-Xi ◽  
Zuo Wei ◽  
H. J Schulze

2008 ◽  
Vol 17 (09) ◽  
pp. 1739-1752
Author(s):  
TATSUYUKI TAKATSUKA

From a serious inconsistency between theory and observations for the mass of hyperon-mixed neutron stars (NSs), it is stressed that some "extra repulsion" is missing in hypernuclear systems and three-body force repulsion is tested for the cases with phenomenological Illinoi's type, 2π-exchange via Δ-excitation type(2πΔ) and string-junction quark model(SJM). It is remarked that the "extra repulsion" should have a nature to act universally, i.e., independent of baryon species. The SJM three-body repulsion can meet the condition because of flavor-independence and {2πΔ+ SJM } scheme is shown to be a promising candidate for the "extra repulsion". Occurence of Λ and Σ- superfluidities are shown also by a realistic approach, which importantly supports the idea of nonstandard fast "hyperon cooling" scenario to explain colder class NSs. However, less attractive ΛΛ interaction suggested by the "NAGARA event" [Formula: see text] leads to the disappearance of Λ superfluidity and the breaking down of the scenario. In this connection, the revival of "Λ superfluidity" due to ΛΣ- pairing instead of ΛΛ one is discussed in a new scheme of "bubble shell" hypothesis where the matching of two different Fermi surfaces is forced.


1974 ◽  
Vol 29 (6) ◽  
pp. 933-946
Author(s):  
H. Heintzmann ◽  
W. Hillebrandt ◽  
M. F. El Eid ◽  
E. R. Hilf

Various methods to study the ground state of neutron star matter are compared and the corresponding neutron star models are contrasted with each other. In the low density region ρ < 1014gr cm-3 the nuclear gas is treated here by means of a Thomas Fermi method and the nuclei are described by the droplet model of Myers and Swiatecki. For ρ > 1014 gr cm-3 both standard Brueckner theory with more realistic interaction (one-boson-exchange) potentials and the semiphenomenological theory of Fermi liquids (together with the standard Reid softcore potential) are applied to neutron star matter. It is shown that while the high mass limit of neutron stars is hardly affected, some properties of lowmass neutron stars such as their binding depend sensitively on these refinements. Various tentative (but unreliable) extensions of the equation of state into high density regime ρ > 1015 gr cm-3 are investigated and it is shown that the mass limit for heavy neutron stars lies around 2.5 solar masses. It is further shown that a third family of stable (hyperon) stars is not forbidden by general relativistic arguments if there is a phase transition at high densities.


2005 ◽  
Vol 20 (31) ◽  
pp. 2335-2349 ◽  
Author(s):  
OMAR BENHAR

The EOS of strongly interacting matter at densities ten to fifteen orders of magnitude larger than the typical density of terrestrial macroscopic objects determines a number of neutron star properties, including the pattern of gravitational waves emitted following the excitation of nonradial oscillation modes. This paper reviews some of the approaches employed to model neutron star matter, as well as the prospects for obtaining new insights from the experimental study of gravitational waves emitted by neutron stars.


Sign in / Sign up

Export Citation Format

Share Document