scholarly journals Constraints on Microscopic and Phenomenological Equations of State of Dense Matter from GW170817

Universe ◽  
2019 ◽  
Vol 5 (10) ◽  
pp. 204 ◽  
Author(s):  
Domenico Logoteta ◽  
Ignazio Bombaci

We discuss the constraints on the equation of state (EOS) of neutron star matter obtained by the data analysis of the neutron star-neutron star merger in the event GW170807. To this scope, we consider two recent microscopic EOS models computed starting from two-body and three-body nuclear interactions derived using chiral perturbation theory. For comparison, we also use three representative phenomenological EOS models derived within the relativistic mean field approach. For each model, we determine the β -stable EOS and then the corresponding neutron star structure by solving the equations of hydrostatic equilibrium in general relativity. In addition, we calculate the tidal deformability parameters for the two neutron stars and discuss the results of our calculations in connection with the constraints obtained from the gravitational wave signal in GW170817. We find that the tidal deformabilities and radii for the binary’s component neutron stars in GW170817, calculated using a recent microscopic EOS model proposed by the present authors, are in very good agreement with those derived by gravitational waves data.

2004 ◽  
Vol 13 (07) ◽  
pp. 1255-1259 ◽  
Author(s):  
EDUARDO LÜTZ ◽  
MOISÉS RAZEIRA ◽  
CÉSAR A. Z. VASCONCELLOS ◽  
MANFRED DILLIG

Based on non-crossed, crossed and correlated ππ exchanges with irreducible N, Δ intermediate states, we predict an isovector component for the σ meson. We study dense hadronic matter in a generalized relativistic mean field approach with nonlinear self-couplings of the I=0,1 components of the scalar field and compare its predictions for neutron star properties with results from different models found in the literature.


Author(s):  
Rashid Riahi ◽  
Seyed Zafarollah Kalantari

Equilibrium sequences were developed for rotating neutron stars in the relativistic mean-field interaction framework using four density-dependent equations of state (EOSs) for the neutron star matter. These sequences were constructed for the observed rotation frequencies of 25, 317, 346, 716 and 1122[Formula: see text]Hz. The bounds of sequences, the secular axisymmetric instability, static and Keplerian sequences were calculated in each model to determine the stability region. The gravitational mass, quadrupole moment, polar, forward and backward redshifts, and Kerr parameter were calculated according to this stability region, and the allowable range of these quantities was then determined for each model. According to the results, DDF and DD-ME[Formula: see text] were unable to properly describe the low-frequency neutron stars, PSR J0348+432, PSR J1614-2230 and PSR J0740+6620 rotate at a frequency of 25, 317 and 346[Formula: see text]Hz, respectively. On the other hand, all the selected EOSs properly described the rotation of PSR J1748-244ad and PSR J1739-285 at a frequency of 716 and 1122[Formula: see text]Hz, respectively. The mass of these stars was, therefore, in the range of [Formula: see text] and [Formula: see text], respectively. The polar, forward and backward redshifts, and the quadrupole moment were calculated in all the selected rotating frequencies and the Keplerian sequence. The results were consistent with observations. Confirming the mass of [Formula: see text] for EXO 0748-676, our result, [Formula: see text], will be close to the observed value, and the EOSs used in this study properly describe this star. Interestingly, the extremum of Kerr parameter, polar, forward and backward redshifts in all models reached constant values of, [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text], respectively. These behaviors of redshifts and Kerr parameter are approximately independent of EOS. The observed behaviors must evaluate by other EOSs to find universal relations for these quantities. Also, a limit value was found for each of these parameters. In this case where these parameters are greater than the limit value, the star can rotate at a frequency equal to or greater than [Formula: see text][Formula: see text]Hz.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
C Watanabe ◽  
K Yanase ◽  
N Yoshinaga

Abstract Masses and radii of neutron stars are obtained in the presence of strong magnetic fields together with rotation. Mass-radius relations are calculated using 11 equations of state (EoSs: GM1, TM1-a, TM1-b, TM2$\omega\rho$-a, TM2$\omega\rho$-b, NL3-a, NL3-b, NL3$\omega\rho$-a, NL3$\omega\rho$-b, DDME2-a and DDME2-b) in relativistic mean field (RMF) theory. Obtained masses are over and around twice the solar mass ($M_\odot$) for all EoSs in the presence of strong magnetic fields of $3 \times 10^{18}$ G at the center. For NL3$\omega\rho$-a and NL3$\omega\rho$-b EoSs, masses are more than $M=2.17\,M_\odot$(observed maximum mass: $2.14\,M_\odot$) even without magnetic fields. Rotational effects are found to be insignificant in any case, at least up to the Kepler frequency. Suitable EoSs are also selected concerning the constraint on the radius of a neutron star.


2013 ◽  
Vol 22 (05) ◽  
pp. 1350026 ◽  
Author(s):  
CHEN WU ◽  
WEI-LIANG QIAN ◽  
YU-GANG MA ◽  
JI-FENG YANG

Relativistic mean-field theory with parameter sets FSUGold and IU-FSU is extended to study the properties of neutron star matter in β equilibrium by including Kaon condensation. The mixed phase of normal baryons and Kaon condensation cannot exist in neutron star matter for the FSUGold model and the IU-FSU model. In addition, it is found that when the optical potential of the K- in normal nuclear matter UK ≳ -100 MeV , the Kaon condensation phase is absent in the inner cores of the neutron stars.


2008 ◽  
Vol 17 (07) ◽  
pp. 1293-1307 ◽  
Author(s):  
AI-JUN MI ◽  
WEI ZUO ◽  
ANG LI

We investigate the effect of the scalar-isovector δ-meson field on the equation of state (EOS) and composition of hyperonic neutron star matter, and the properties of hyperonic neutron stars within the framework of the relativistic mean field theory. The influence of the δ-field turns out to be quite different and generally weaker for hyperonic neutron star matter as compared to that for npeμ neutron star matter. We find that inclusion of the δ-field enhances the strangeness content slightly and consequently moderately softens the EOS of neutron star matter in its hyperonic phase. As for the composition of hyperonic star matter, the effect of the δ-field is shown to shift the onset of the negatively-charged (positively-charged) hyperons to slightly lower (higher) densities and to enhance (reduce) their abundances. The influence of the δ-field on the maximum mass of hyperonic neutron stars is found to be fairly weak, whereas inclusion of the δ-field turns out to enhance sizably both the radii and the moments of inertia of neutron stars with given masses. It is also shown that the effects of the δ-field on the properties of hyperonic neutron stars remain similar in the case of switching off the Σ hyperons.


2001 ◽  
Vol 10 (05) ◽  
pp. 607-624 ◽  
Author(s):  
ILONA BEDNAREK ◽  
RYSZARD MANKA

Properties of rotating neutron stars with the use of relativistic mean-field theory are considered. The performed analysis of neutron star matter is based on the nonlinear Lgrangian density. The presence of nonlinear interaction of vector mesons modifies the density dependence of the ρ field and influences bulk parameters of neutron stars. The observed quasiperiodic X-ray oscillations of low mass X-ray binaries can be used in order to constrain the equation of state of neutron star matter. Having assumed that the maximum frequency of the quasiperiodic oscillations originates at the circular orbit it is possible to estimate masses and radii of neutron stars.


2008 ◽  
Vol 17 (09) ◽  
pp. 1765-1773 ◽  
Author(s):  
JIGUANG CAO ◽  
ZHONGYU MA ◽  
NGUYEN VAN GIAI

The microscopic properties and superfluidity of the inner crust in neutron stars are investigated in the framework of the relativistic mean field(RMF) model and BCS theory. The Wigner-Seitz(W-S) cell of inner crust is composed of neutron-rich nuclei immersed in a sea of dilute, homogeneous neutron gas. The pairing properties of nucleons in the W-S cells are treated in BCS theory with Gogny interaction. In this work, we emphasize on the choice of the boundary conditions in the RMF approach and superfluidity of the inner crust. Three kinds of boundary conditions are suggested. The properties of the W-S cells with the three kinds of boundary conditions are investigated. The neutron density distributions in the RMF and Hartree-Fock-Bogoliubov(HFB) models are compared.


2004 ◽  
Vol 13 (07) ◽  
pp. 1249-1253
Author(s):  
DÉBORA P. MENEZES ◽  
C. PROVIDÊNCIA

We investigate the properties of mixed stars formed by hadronic and quark matter in β-equilibrium described by appropriate equations of state (EOS) in the framework of relativistic mean-field theory. The calculations were performed for T=0 and for finite temperatures and also for fixed entropies with and without neutrino trapping in order to describe neutron and proto-neutron stars. The star properties are discussed. Maximum allowed masses for proto-neutron stars are much larger when neutrino trapping is imposed.


2021 ◽  
Vol 252 ◽  
pp. 05004
Author(s):  
Polychronis Koliogiannis ◽  
Charalampos Moustakidis

The knowledge of the equation of state is a key ingredient for many dynamical phenomena that depend sensitively on the hot and dense nuclear matter, such as the formation of protoneutron stars and hot neutron stars. In order to accurately describe them, we construct equations of state at FInite temperature and entropy per baryon for matter with varying proton fractions. This procedure is based on the momentum dependent interaction model and state-of-the-art microscopic data. In addition, we investigate the role of thermal and rotation effects on microscopic and macroscopic properties of neutron stars, including the mass and radius, the frequency, the Kerr parameter, the central baryon density, etc. The latter is also connected to the hot and rapidly rotating remnant after neutron star merger. The interplay between these quantities and data from late observations of neutron stars, both isolated and in matter of merging, could provide useful insight and robust constraints on the equation of state of nuclear matter.


Sign in / Sign up

Export Citation Format

Share Document