Reliability of the double-folding potential for fusion cross sections of light systems

2015 ◽  
Vol 91 (1) ◽  
Author(s):  
Azni Abdul Aziz ◽  
Norhasliza Yusof ◽  
Muhammad Zamrun Firihu ◽  
Hasan Abu Kassim
2002 ◽  
Vol 11 (05) ◽  
pp. 437-444 ◽  
Author(s):  
N. A. El-NOHY ◽  
F. A. EL-AKKAD ◽  
A. M. ABDEL-MONEM ◽  
O. S. ABDEL-FATTAH

A double folding potential has been used to calculate the real part of optical potential of 6 Li scattering by 12 C , 40 Ca , 90 Zr and 208Pb. In this model the effective nucleon-nucleon interaction potential has been developed to include an energy and density dependent in a simple form. The real part of the optical potential calculated by the double folding model is then reduced to an equivalent Wood–Saxon form using a fitting program. The obtained Wood–Saxon potentials have been used to calculate the differential cross sections for elastic scattering of 6 Li nucleus by 12 C , 40 Ca , 90 Zr and 208 Pb . This method gives satisfactory agreement of the calculated differential scattering cross section with the corresponding experimental values.


2006 ◽  
Vol 21 (29) ◽  
pp. 2217-2232 ◽  
Author(s):  
M. E. KURKCUOGLU ◽  
H. AYTEKIN ◽  
I. BOZTOSUN

In this paper, a simultaneous analysis of the elastic scattering data of the 16 O +16 O system for the energy range 5–10 MeV/nucleon is performed theoretically within the framework of the optical model formalism, by using the α–α double folding cluster potential. The α–α double folding cluster potential is evaluated by using the α-cluster distribution densities in the usual nucleon–nucleon double folding process with an effective α–α interaction potential. The results of the α–α double folding cluster potential analysis are compared with the findings of the phenomenological Woods–Saxon squared and nucleon–nucleon double folding potentials. All potentials have exhibited a very good agreement with the experimental measurements for the elastic scattering angular distributions. Furthermore, it is shown that, the α–α double folding cluster potential and nucleon–nucleon double folding potential calculations provide very consistent results with each other. Thus, the 16 O+ 16 O system has been described by optical potentials having a deep real potential part and a weak absorptive imaginary potential part.


2006 ◽  
Vol 21 (31n33) ◽  
pp. 2439-2446
Author(s):  
T. Furumoto ◽  
Y. Sakuragi

A systematic analysis of alpha(4 He )-nucleus elastic scattering is made by using a microscopic optical model potential obtained by the double folding of a complex nucleon-nucleon (NN) effective interaction based on the G-matrix theory. We adopt the so-called JLM interaction as the complex NN interaction and test its applicability to the 4 He elastic scattering by 12 C , 16 O , 28 Si and 40 Ca . The experimental cross sections for incident energies ranging from E Lab = 40 to 240 MeV are well reproduced by the double folding potential up to backward angles. Although modification of the real and imaginary potential strength by about 25% and 35%, respectively, in average is necessary to reproduce the data, the renormalization factors are found to be almost constant with respect to the incident energy and target mass number.


2015 ◽  
Vol 46 (1) ◽  
pp. 120-128 ◽  
Author(s):  
A. S. Freitas ◽  
L. Marques ◽  
X. X. Zhang ◽  
M. A. Luzio ◽  
P. Guillaumon ◽  
...  

2019 ◽  
Vol 28 (05) ◽  
pp. 1950029 ◽  
Author(s):  
Peter Mohr

Cross-sections for [Formula: see text]Ca + [Formula: see text] at low energies have been calculated from two different models and three different [Formula: see text]-nucleus potentials. The first model determines the cross-sections from the barrier transmission in a real nuclear potential. Second, cross-sections are derived within the optical model (OM) using a complex nuclear potential. The excitation functions from barrier transmission are smooth, whereas the excitation functions from the OM show a significant sensitivity to the chosen imaginary potential. Cross-sections far below the Coulomb barrier are lower from barrier transmission than from the OM. This difference is explained by additional absorption in the tail of the imaginary part of the potential in the OM. At higher energies, the calculations from the two models and all [Formula: see text]-nucleus potentials converge. Finally, in contradiction to another recent study where a double-folding potential failed in a WKB calculation, the applicability of double-folding potentials for [Formula: see text]Ca + [Formula: see text] at low energies is clearly confirmed in the present analysis for the simple barrier transmission model and for the full OM calculation.


2016 ◽  
Vol 25 (09) ◽  
pp. 1650061 ◽  
Author(s):  
R. Pampa Condori ◽  
H. Dias ◽  
J. Lubian

In this paper, the [Formula: see text] reactions are revisited, with the goal of obtaining spectroscopic factors (SF) for the transition to the ground state of some residual nuclei, applying the distorted wave Born approximation (DWBA). The double-folding São Paulo Potential (SPP) was used to derive the distorted wave function in the entrance and exit channels. The derived SF are compared with the results of extensive shell model calculations showing a rather good agreement.


Sign in / Sign up

Export Citation Format

Share Document