Application of JLM folding model to alpha-nucleus scattering

2006 ◽  
Vol 21 (31n33) ◽  
pp. 2439-2446
Author(s):  
T. Furumoto ◽  
Y. Sakuragi

A systematic analysis of alpha(4 He )-nucleus elastic scattering is made by using a microscopic optical model potential obtained by the double folding of a complex nucleon-nucleon (NN) effective interaction based on the G-matrix theory. We adopt the so-called JLM interaction as the complex NN interaction and test its applicability to the 4 He elastic scattering by 12 C , 16 O , 28 Si and 40 Ca . The experimental cross sections for incident energies ranging from E Lab = 40 to 240 MeV are well reproduced by the double folding potential up to backward angles. Although modification of the real and imaginary potential strength by about 25% and 35%, respectively, in average is necessary to reproduce the data, the renormalization factors are found to be almost constant with respect to the incident energy and target mass number.

2019 ◽  
Vol 65 (2) ◽  
pp. 168 ◽  
Author(s):  
Awad A. Ibraheem ◽  
Arwa S. Al-Hajjaji ◽  
And M. El-Azab Farid

The elastic scattering of 17F have been studied for different mass targets (e.g. 12C, 14N, 58Ni, 208Pb) at different energies. We used the double folding optical model potential based on the density-dependent DDM3Y effective nucleon-nucleon interaction. Both version of the density distribution of the one-proton halo 17F nucleus has been taken into account in the above mentioned potential. The data for angular distributions of the elastic scattering differential cross section and reaction cross sections has been successfully reproduced at different energies using the above potentials. The energy dependence and the target mass number dependence of scattering in the imaginary volume integrals and the total reaction cross sections has also been studied.


2006 ◽  
Vol 21 (29) ◽  
pp. 2217-2232 ◽  
Author(s):  
M. E. KURKCUOGLU ◽  
H. AYTEKIN ◽  
I. BOZTOSUN

In this paper, a simultaneous analysis of the elastic scattering data of the 16 O +16 O system for the energy range 5–10 MeV/nucleon is performed theoretically within the framework of the optical model formalism, by using the α–α double folding cluster potential. The α–α double folding cluster potential is evaluated by using the α-cluster distribution densities in the usual nucleon–nucleon double folding process with an effective α–α interaction potential. The results of the α–α double folding cluster potential analysis are compared with the findings of the phenomenological Woods–Saxon squared and nucleon–nucleon double folding potentials. All potentials have exhibited a very good agreement with the experimental measurements for the elastic scattering angular distributions. Furthermore, it is shown that, the α–α double folding cluster potential and nucleon–nucleon double folding potential calculations provide very consistent results with each other. Thus, the 16 O+ 16 O system has been described by optical potentials having a deep real potential part and a weak absorptive imaginary potential part.


2015 ◽  
Vol 24 (01) ◽  
pp. 1550005 ◽  
Author(s):  
Yong-Li Xu ◽  
Hai-Rui Guo ◽  
Yin-Lu Han ◽  
Qing-Biao Shen

The elastic scattering angular distributions of triton are calculated by the obtained systematic helium-3 global optical model potential parameters and compared with the available experimental data. These results show that the present global optical model potential can give a reasonable description of the elastic scattering of triton. The total reaction cross-sections of triton as a function of energy per nucleon are also further investigated and the reasonable results are presented.


2016 ◽  
Vol 25 (01) ◽  
pp. 1650003 ◽  
Author(s):  
Mandira Sinha ◽  
Subinit Roy ◽  
P. Basu ◽  
H. Majumdar

Elastic scattering angular distributions for 6Li+[Formula: see text]Si system were measured at [Formula: see text] and analyzed along with the existing data from the previous measurements in the energy range of [Formula: see text]. The measured cross-sections and the existing data, forming a set of angular distributions over a range of E/[Formula: see text], were analyzed using the phenomenological optical model potential (OMP). Three different sets of potential parameters were used. The energy dependence of the real and the imaginary potential strengths were, subsequently, extracted at the radius of sensitivity ([Formula: see text]) for the system. Continuum Discretized Coupled Channel (CDCC) calculation was performed to explore the contribution of projectile break-up (BU) on the observed energy dependence of the effective potential for elastic scattering of 6Li from [Formula: see text]Si. The energy variation of the strength of the real potential with continuum coupling was found to agree with the energy dependence of the same extracted from the (OMP) analysis at energies around the barrier. But the behavior of the imaginary strength appeared to be different. The calculated fusion cross-sections, including the effect of BU, clearly overestimated the measured fusion excitation function data in the below and near barrier energies but compared well with the data at higher energies.


2016 ◽  
Vol 25 (11) ◽  
pp. 1650095
Author(s):  
Valery I. Kovalchuk

A general analytical expressions for the cross-section and the polarization of nucleons arising in the inclusive deuteron stripping reaction have been derived in the diffraction approximation. The nucleon–nucleus phases were calculated in the framework of Glauber formalism and making use of the double-folding potential. The tabulated distributions of the target nucleus density and the realistic deuteron wave function with correct asymptotic at large nucleon–nucleon distances were used. The calculated angular dependences for the cross-sections and the analyzing powers of the [Formula: see text] reaction are compared with corresponding experimental data.


2020 ◽  
Vol 66 (3 May-Jun) ◽  
pp. 336
Author(s):  
T. Ulucay ◽  
M. Aygun

The elastic scattering angular distributions of 32S projectile by 12C, 27Al, 40Ca, 48Ca, 48Ti, 58Ni, 63Cu, 64Ni, 76Ge, 96Mo and 100Mo targets over the energy range 83.3 - 180 MeV are analyzed in the framework of the double folding model based on the optical model. The real part of the optical model potential is obtained by using double folding model for eight different density distributions of 32S which consist of Ngo, SP, 2pF, G1, G2, S, 3pF, and HFB. The imaginary part of the optical model potential is accepted as the Woods-Saxon (WS) potential. The theoretical results successfully reproduce the experimental data over both a wide energy and a wide target nucleus. Finally, simple and useful formulas which predict imaginary potential depths of each density are derived based on the elastic scattering results.


2020 ◽  
Vol 3 (2) ◽  
pp. 252-260
Author(s):  
RC Abenga ◽  
JO Fiase ◽  
GJ Ibeh

Optical model analysis of the elastic scattering analysis of α + 40Ca at Elab=104 and 141.7 MeV have been performed using the folding model approach of the nuclear reaction video (NRV) knowledge base code. The M3Y-type effective nucleon-nucleon interaction derived using the lowest order constrained variational (LOCV) approach for mass number A=40 was used to obtain the results. Elastic scattering differential cross section data were obtained for this system at two bombarding energies. The calculated differential cross sections are in good agreement with the experimental results and the anticipated mass dependence of the M3Y-type effective interaction improved the results at forward angles. This shows that, the mass dependence of the M3Y-type effective interaction in our results should be of value in the description of the scattering of other nuclear systems


2002 ◽  
Vol 11 (05) ◽  
pp. 437-444 ◽  
Author(s):  
N. A. El-NOHY ◽  
F. A. EL-AKKAD ◽  
A. M. ABDEL-MONEM ◽  
O. S. ABDEL-FATTAH

A double folding potential has been used to calculate the real part of optical potential of 6 Li scattering by 12 C , 40 Ca , 90 Zr and 208Pb. In this model the effective nucleon-nucleon interaction potential has been developed to include an energy and density dependent in a simple form. The real part of the optical potential calculated by the double folding model is then reduced to an equivalent Wood–Saxon form using a fitting program. The obtained Wood–Saxon potentials have been used to calculate the differential cross sections for elastic scattering of 6 Li nucleus by 12 C , 40 Ca , 90 Zr and 208 Pb . This method gives satisfactory agreement of the calculated differential scattering cross section with the corresponding experimental values.


2020 ◽  
Vol 29 (09) ◽  
pp. 2050078
Author(s):  
Mohammad F. Alshudifat ◽  
M. Serhan ◽  
M. Abusini

The angular distribution of the nucleon elastic scattering on the lightest mirror nuclei 3H and 3He at incident energies of 6 and 9[Formula: see text]MeV has been analyzed. A new set of phenomenological optical potential parameters has been obtained. A comparison of differential cross-sections has been performed for both elastic scatterings of neutron and proton on the mirror nuclei. The contribution of individual volume, surface, and spin-orbit terms in the optical model potential for the projectiles at different energies was studied. The predicted elastic angular distributions results compared well with the experimental data.


2015 ◽  
Vol 24 (12) ◽  
pp. 1550092 ◽  
Author(s):  
Xin-Wu Su ◽  
Yin-Lu Han

A new set of global phenomenological optical model potential (OMP) parameters for alpha projectile is obtained by simultaneously fitting the experimental data of reaction cross-sections and elastic scattering angular distributions in the mass range of target nuclei [Formula: see text] at incident energies below 386[Formula: see text]MeV. The total reaction cross-sections and elastic scattering angular distributions are calculated and compared with experimental data for different targets. A satisfactory agreement is presented between them.


Sign in / Sign up

Export Citation Format

Share Document