Absorption effects in nuclear particle correlations

2018 ◽  
Vol 97 (3) ◽  
Author(s):  
R. da Silveira ◽  
Ch. Leclercq-Willain
Author(s):  
P. Fraundorf ◽  
J. Tentschert

Since the discovery of their etchability in the early 1960‘s, nuclear particle tracks in insulators have had a diverse and exciting history of application to problems ranging from the selective filtration of cancer cells from blood to the detection of 244Pu in the early solar system. Their usefulness stems from the fact that they are comprised of a very thin (e.g. 20-40Å) damage core which etches more rapidly than does the bulk material. In fact, because in many insulators tracks are subject to radiolysis damage (beam annealing) in the transmission electron microscope, the body of knowledge concerning etched tracks far outweighs that associated with latent (unetched) tracks in the transmission electron microscope.With the development of scanned probe microscopies with lateral resolutions on the near atomic scale, a closer look at the structure of unetched nuclear particle tracks, particularly at their point of interface with solid surfaces, is now warranted and we think possible. The ion explosion spike model of track formation, described loosely, suggests that a burst of ionization along the path of a charged particle in an insulator creates an electrostatically unstable array of adjacent ions which eject one another by Coulomb repulsion from substitutional into interstitial sites. Regardless of the mechanism, the ejection process which acts to displace atoms along the track core seems likely to operate at track entry and exit surfaces, with the added feature of mass loss at those surfaces as well. In other words, we predict pits whose size is comparable to the track core width.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
S. Acharya ◽  
◽  
D. Adamová ◽  
A. Adler ◽  
J. Adolfsson ◽  
...  

Abstract Systematic studies of charge-dependent two- and three-particle correlations in Pb-Pb collisions at $$ \sqrt{s_{\mathrm{NN}}} $$ s NN = 2.76 and 5.02 TeV used to probe the Chiral Magnetic Effect (CME) are presented. These measurements are performed for charged particles in the pseudorapidity (η) and transverse momentum (pT) ranges |η| < 0.8 and 0.2 < pT< 5 GeV/c. A significant charge-dependent signal that becomes more pronounced for peripheral collisions is reported for the CME-sensitive correlators γ1, 1 = 〈cos(φα + φβ − 2Ψ2)〉 and γ1, − 3 = 〈cos(φα − 3φβ + 2Ψ2)〉. The results are used to estimate the contribution of background effects, associated with local charge conservation coupled to anisotropic flow modulations, to measurements of the CME. A blast-wave parametrisation that incorporates local charge conservation tuned to reproduce the centrality dependent background effects is not able to fully describe the measured γ1,1. Finally, the charge and centrality dependence of mixed-harmonics three-particle correlations, of the form γ1, 2 = 〈cos(φα + 2φβ − 3Ψ3)〉, which are insensitive to the CME signal, verify again that background contributions dominate the measurement of γ1,1.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Przemysław Kościk ◽  
Arkadiusz Kuroś ◽  
Adam Pieprzycki ◽  
Tomasz Sowiński

AbstractWe derive and describe a very accurate variational scheme for the ground state of the system of a few ultra-cold bosons confined in one-dimensional traps of arbitrary shapes. It is based on assumption that all inter-particle correlations have two-body nature. By construction, the proposed ansatz is exact in the noninteracting limit, exactly encodes boundary conditions forced by contact interactions, and gives full control on accuracy in the limit of infinite repulsions. We show its efficiency in a whole range of intermediate interactions for different external potentials. Our results manifest that for generic non-parabolic potentials mutual correlations forced by interactions cannot be captured by distance-dependent functions.


1990 ◽  
Vol 514 (3) ◽  
pp. 564-588 ◽  
Author(s):  
D. Ardouin ◽  
Z. Basrak ◽  
P. Schuck ◽  
A. Péghaire ◽  
F. Saint-Laurent ◽  
...  

1989 ◽  
Vol 57 (1-2) ◽  
pp. 267-288 ◽  
Author(s):  
R. Krieg ◽  
K. -J. Schmitt ◽  
C. Toepffer

1984 ◽  
Vol 29 (1) ◽  
pp. 150-153 ◽  
Author(s):  
Madan M. Aggarwal ◽  
I. S. Mittra ◽  
P. M. Sood

Sign in / Sign up

Export Citation Format

Share Document