Particle correlations in multiparticle production in proton-nucleus interactions at 200 and 400 GeV

1984 ◽  
Vol 29 (1) ◽  
pp. 150-153 ◽  
Author(s):  
Madan M. Aggarwal ◽  
I. S. Mittra ◽  
P. M. Sood
2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
S. Acharya ◽  
◽  
D. Adamová ◽  
A. Adler ◽  
J. Adolfsson ◽  
...  

Abstract Systematic studies of charge-dependent two- and three-particle correlations in Pb-Pb collisions at $$ \sqrt{s_{\mathrm{NN}}} $$ s NN = 2.76 and 5.02 TeV used to probe the Chiral Magnetic Effect (CME) are presented. These measurements are performed for charged particles in the pseudorapidity (η) and transverse momentum (pT) ranges |η| < 0.8 and 0.2 < pT< 5 GeV/c. A significant charge-dependent signal that becomes more pronounced for peripheral collisions is reported for the CME-sensitive correlators γ1, 1 = 〈cos(φα + φβ − 2Ψ2)〉 and γ1, − 3 = 〈cos(φα − 3φβ + 2Ψ2)〉. The results are used to estimate the contribution of background effects, associated with local charge conservation coupled to anisotropic flow modulations, to measurements of the CME. A blast-wave parametrisation that incorporates local charge conservation tuned to reproduce the centrality dependent background effects is not able to fully describe the measured γ1,1. Finally, the charge and centrality dependence of mixed-harmonics three-particle correlations, of the form γ1, 2 = 〈cos(φα + 2φβ − 3Ψ3)〉, which are insensitive to the CME signal, verify again that background contributions dominate the measurement of γ1,1.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Przemysław Kościk ◽  
Arkadiusz Kuroś ◽  
Adam Pieprzycki ◽  
Tomasz Sowiński

AbstractWe derive and describe a very accurate variational scheme for the ground state of the system of a few ultra-cold bosons confined in one-dimensional traps of arbitrary shapes. It is based on assumption that all inter-particle correlations have two-body nature. By construction, the proposed ansatz is exact in the noninteracting limit, exactly encodes boundary conditions forced by contact interactions, and gives full control on accuracy in the limit of infinite repulsions. We show its efficiency in a whole range of intermediate interactions for different external potentials. Our results manifest that for generic non-parabolic potentials mutual correlations forced by interactions cannot be captured by distance-dependent functions.


1981 ◽  
Vol 24 (5) ◽  
pp. 1112-1116 ◽  
Author(s):  
R. E. Gibbs ◽  
J. J. Lord ◽  
R. J. Wilkes

1990 ◽  
Vol 514 (3) ◽  
pp. 564-588 ◽  
Author(s):  
D. Ardouin ◽  
Z. Basrak ◽  
P. Schuck ◽  
A. Péghaire ◽  
F. Saint-Laurent ◽  
...  

1981 ◽  
Vol 59 (6) ◽  
pp. 812-819 ◽  
Author(s):  
S. C. Varma ◽  
V. Kumar ◽  
A. P. Sharma

An experimental study is carried out on the effects of nuclear mass on leading particle multiplicity and multiparticle production with the help of an emulsion stack exposed to 50 GeV/c π− beam under a strong pulsed magnetic field. The study of the effect of nuclear mass on the forward–backward asymmetry in a π−–A collision is also carried out using the grey particle multiplicity data. The results support the concept of "formation length" of radiation. An attempt is made to explain the space–time structure of hadronic matter in terms of the additive quark model of multiparticle production.


Sign in / Sign up

Export Citation Format

Share Document