scholarly journals Strangeness enhancement due to string fluctuations

2020 ◽  
Vol 101 (11) ◽  
Author(s):  
H. J. Pirner ◽  
B. Z. Kopeliovich ◽  
K. Reygers
2015 ◽  
Vol 30 (22) ◽  
pp. 1550131 ◽  
Author(s):  
A. Tawfik ◽  
E. Gamal ◽  
A. G. Shalaby

The production of pion, kaon and proton was measured in Pb–Pb collisions at nucleus–nucleus center-of-mass energy [Formula: see text] by the ALICE experiment at Large Hadron Collider (LHC). The particle ratios of these species compared to the RHIC measurements are confronted to the hadron resonance gas (HRG) model and to simulations based on the event generators PYTHIA 6.4.21 and HIJING 1.36. It is found that the homogeneous particle–antiparticle ratios (same species) are fully reproducible by means of HRG and partly by PYTHIA 6.4.21 and HIJING 1.36. The mixed kaon–pion and proton–pion ratios measured at RHIC and LHC energies seem to be reproducible by the HRG model. On the other hand, the strange abundances are underestimated in both event generators. This might be originated to strangeness suppression in the event generators and/or possible strangeness enhancement in the experimental data. It is apparent that the values of kaon–pion ratios are not sensitive to the huge increase of [Formula: see text] from 200 (RHIC) to 2760 GeV (LHC). We conclude that the ratios of produced particle at LHC seem not depending on the system size.


2015 ◽  
Vol 2015 ◽  
pp. 1-16 ◽  
Author(s):  
Md. Nasim ◽  
Vipul Bairathi ◽  
Mukesh Kumar Sharma ◽  
Bedangadas Mohanty ◽  
Anju Bhasin

The main aim of the relativistic heavy-ion experiment is to create extremely hot and dense matter and study the QCD phase structure. With this motivation, experimental program started in the early 1990s at the Brookhaven Alternating Gradient Synchrotron (AGS) and the CERN Super Proton Synchrotron (SPS) followed by Relativistic Heavy Ion Collider (RHIC) at Brookhaven and recently at Large Hadron Collider (LHC) at CERN. These experiments allowed us to study the QCD matter from center-of-mass energies (sNN) 4.75 GeV to 2.76 TeV. Theϕmeson, due to its unique properties, is considered as a good probe to study the QCD matter created in relativistic collisions. In this paper we present a review on the measurements ofϕmeson production in heavy-ion experiments. Mainly, we discuss the energy dependence ofϕmeson invariant yield and the production mechanism, strangeness enhancement, parton energy loss, and partonic collectivity in nucleus-nucleus collisions. Effect of later stage hadronic rescattering on elliptic flow (v2) of proton is also discussed relative to corresponding effect onϕmesonv2.


2002 ◽  
Vol 66 (6) ◽  
Author(s):  
Rudolph C. Hwa ◽  
C. B. Yang

1992 ◽  
Vol 55 (3) ◽  
pp. 491-495 ◽  
Author(s):  
Helena Biaŀkowska ◽  
Marek Gaździcki ◽  
Waldemar Retyk ◽  
Ewa Skrzypczak

2017 ◽  
Vol 26 (07) ◽  
pp. 1750046
Author(s):  
Abdel Nasser Tawfik ◽  
Magda Abdel Wahab ◽  
Hayam Yassin ◽  
Eman R. Abo Elyazeed ◽  
Hadeer M. Nasr El Din

From a systematic analysis of the energy-dependence of four antibaryon-to-baryon ratios relative to the antikaon-to-kaon ratio, we propose an alternative approach determining the strange-quark chemical potential ([Formula: see text]). It is found that [Formula: see text] generically genuinely equals one-fifth the baryon chemical potential ([Formula: see text]). An additional quantity depending on [Formula: see text] and the freezeout temperature ([Formula: see text]) should be added in order to assure averaged strangeness conversation. This quantity gives a genuine estimation for the possible strangeness enhancement with the increase in the collision energy. At the chemical freezeout conditioned to constant entropy density normalized to temperature cubed, various particle ratios calculated at [Formula: see text] and [Formula: see text] and the resultant [Formula: see text] excellently agree with the statistical-thermal calculations.


Sign in / Sign up

Export Citation Format

Share Document