scholarly journals Quasinormal modes of a massless Dirac field in de Rham-Gabadadze-Tolley massive gravity

2020 ◽  
Vol 101 (12) ◽  
Author(s):  
Pitayuth Wongjun ◽  
Chun-Hung Chen ◽  
Ratchaphat Nakarachinda
2015 ◽  
Vol 30 (29) ◽  
pp. 1550147 ◽  
Author(s):  
Sharmanthie Fernando

We have studied quasinormal modes (QNMs) of spinor-[Formula: see text], massless Dirac field perturbations of a black hole in massive gravity. The parameters of the theory, such as the mass of the black hole, the scalar charge of the black hole, mode number and the multipole number are varied to observe how the corresponding quasinormal frequencies change. We have also used the Pöschl–Teller approximation to reach analytical values for the frequencies of quasinormal modes for comparison with the numerically obtained values. Comparisons are done with the frequencies of the Schwarzschild black hole.


Author(s):  
Supakchai Ponglertsakul ◽  
Piyabut Burikham ◽  
Lunchakorn Tannukij

2019 ◽  
Vol 28 (09) ◽  
pp. 1950113 ◽  
Author(s):  
Bin Liang ◽  
Shao-Wen Wei ◽  
Yu-Xiao Liu

Using the quasinormal modes of a massless scalar perturbation, we investigate the small/large black hole phase transition in the Lorentz symmetry breaking massive gravity. We mainly focus on two issues: (i) the sign change of slope of the quasinormal mode frequencies in the complex-[Formula: see text] diagram; (ii) the behaviors of the imaginary part of the quasinormal mode frequencies along the isobaric or isothermal processes. For the first issue, our result shows that, at low fixed temperature or pressure, the phase transition can be probed by the sign change of slope. While increasing the temperature or pressure to certain values near the critical point, there will appear the deflection point, which indicates that such method may not be appropriate to test the phase transition. In particular, the behavior of the quasinormal mode frequencies for the small and large black holes tend to be the same at the critical point. For the second issue, it is shown that the nonmonotonic behavior is observed only when the small/large black hole phase transition occurs. Therefore, this property can provide us with an additional method to probe the phase transition through the quasinormal modes.


2020 ◽  
Vol 80 (8) ◽  
Author(s):  
Takol Tangphati ◽  
Auttakit Chatrabhuti ◽  
Daris Samart ◽  
Phongpichit Channuie

Abstract In this work, we study the thin-shell wormholes in dRGT massive gravity. In order to glue two bulks of the spacetime geometry, we first derive junction conditions of the dRGT spacetime. We obtain the dynamics of the spherical thin-shell wormholes in the dRGT theory. We show that the massive graviton correction term of the dRGT theory in the Einstein equation is represented in terms of the effective anisotropic pressure fluid. However, if there is only this correction term, without invoking exotic fluids, we find that the thin-shell wormholes cannot be stabilized. We then examine the stability conditions of the wormholes by introducing four existing models of the exotic fluids at the throat. In addition, we analyze the energy conditions for the thin-shell wormholes in the dRGT massive gravity by checking the null, weak, and strong conditions at the wormhole throat. We show that in general the classical energy conditions are violated by introducing all existing models of the exotic fluids. Moreover, we quantify the wormhole geometry by using the embedding diagrams to represent a thin-shell wormhole in the dRGT massive gravity.


2020 ◽  
Vol 101 (10) ◽  
Author(s):  
Sushant G. Ghosh ◽  
Rahul Kumar ◽  
Lunchakorn Tannukij ◽  
Pitayuth Wongjun

2009 ◽  
Vol 24 (25) ◽  
pp. 2025-2037 ◽  
Author(s):  
R. SINI ◽  
V. C. KURIAKOSE

We evaluate quasinormal mode frequencies for RN black hole spacetimes with cosmic string perturbed by a massless Dirac field, using Pöschl–Teller potential method. We find that only in the case of RN black hole having small charge, the effect due to cosmic string will dominate when perturbed by a negatively charged Dirac field, but if we are perturbing with positively charged Dirac field decay will be less in the case of black hole having cosmic string compared to the RN black hole without string.


2004 ◽  
Vol 13 (06) ◽  
pp. 1105-1118 ◽  
Author(s):  
WEI ZHOU ◽  
JIAN-YANG ZHU

To find what influence the charge of the black hole Q will bring to the evolution of the quasinormal modes, we calculate the quasinormal frequencies of the neutrino field (charge e=0) perturbations and those of the massless Dirac field (e≠0) perturbations in the RN metric. The influences of Q, e, the momentum quantum number l, and the mode number n are discussed. Among the conclusions, the most important one is that, at the stage of quasinormal ringing, when the black hole and the field have the same kind of charge (eQ>0), the quasinormal modes of the massless charged Dirac field decay faster than those of the neutral ones, and when eQ<0, the massless charged Dirac field decays slower, which may be helpful in the astronomical observation. In addition, we compare the influence from the charge of the black hole to the spin 1/2 field and scalar field perturbations including the extremal limit (M=Q) and find a turning point of Q exists in both cases. The explanation of this fact is unclear with some suggestions that may be helpful are given.


2010 ◽  
Vol 25 (02) ◽  
pp. 111-124 ◽  
Author(s):  
R. SINI ◽  
NIJO VARGHESE ◽  
V. C. KURIAKOSE

The effect of cosmic string on the quasinormal modes (QNMs) of massless Dirac field perturbations were studied in different black hole spacetimes. Quasi-normal mode frequencies of massless Dirac field in Schwarzschild, RN extremal, SdS and near extremal SdS black hole spacetimes with cosmic string are obtained using WKB approximation. Our study shows a clear deviation in QNMs due to presence of cosmic string from those in the absence of string. The influence of cosmic string coded in the form of an increase in the oscillation frequency and damping time of QNMs.


Sign in / Sign up

Export Citation Format

Share Document