scholarly journals Simplifying 4D N=3 harmonic superspace

2020 ◽  
Vol 102 (6) ◽  
Author(s):  
Dharmesh Jain ◽  
Chia-Yi Ju ◽  
Warren Siegel
Keyword(s):  
2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
I. L. Buchbinder ◽  
E. A. Ivanov ◽  
V. A. Ivanovskiy

Abstract We develop a novel bi-harmonic $$ \mathcal{N} $$ N = 4 superspace formulation of the $$ \mathcal{N} $$ N = 4 supersymmetric Yang-Mills theory (SYM) in four dimensions. In this approach, the $$ \mathcal{N} $$ N = 4 SYM superfield constraints are solved in terms of on-shell $$ \mathcal{N} $$ N = 2 harmonic superfields. Such an approach provides a convenient tool of constructing the manifestly $$ \mathcal{N} $$ N = 4 supersymmetric invariants and further rewriting them in $$ \mathcal{N} $$ N = 2 harmonic superspace. In particular, we present $$ \mathcal{N} $$ N = 4 superfield form of the leading term in the $$ \mathcal{N} $$ N = 4 SYM effective action which was known previously in $$ \mathcal{N} $$ N = 2 superspace formulation.


2020 ◽  
Vol 2020 (8) ◽  
Author(s):  
I. L. Buchbinder ◽  
E. A. Ivanov ◽  
B. S. Merzlikin ◽  
K. V. Stepanyantz

Abstract We apply the harmonic superspace approach for calculating the divergent part of the one-loop effective action of renormalizable 6D, $$ \mathcal{N} $$ N = (1, 0) supersymmetric higher-derivative gauge theory with a dimensionless coupling constant. Our consideration uses the background superfield method allowing to carry out the analysis of the effective action in a manifestly gauge covariant and $$ \mathcal{N} $$ N = (1, 0) supersymmetric way. We exploit the regularization by dimensional reduction, in which the divergences are absorbed into a renormalization of the coupling constant. Having the expression for the one-loop divergences, we calculate the relevant β-function. Its sign is specified by the overall sign of the classical action which in higher-derivative theories is not fixed a priori. The result agrees with the earlier calculations in the component approach. The superfield calculation is simpler and provides possibilities for various generalizations.


2012 ◽  
Vol 43 (5) ◽  
pp. 562-568 ◽  
Author(s):  
F. Delduc ◽  
E. Ivanov

2005 ◽  
Vol 722 (3) ◽  
pp. 297-327 ◽  
Author(s):  
S. Bellucci ◽  
E. Ivanov ◽  
A. Sutulin
Keyword(s):  

1985 ◽  
Vol 2 (1) ◽  
pp. 127-127 ◽  
Author(s):  
A Galperin ◽  
A Ivanov ◽  
S Kalitzin ◽  
V Ogievetsky ◽  
E Sokatchev

1999 ◽  
Vol 14 (11) ◽  
pp. 1737-1757 ◽  
Author(s):  
SERGEI M. KUZENKO

We analyze the relationship between the N=2 harmonic and projective superspaces, which are the only approaches developed to describe general N=2 super-Yang–Mills theories in terms of off-shell supermultiplets with conventional supersymmetry. The structure of low energy hypermultiplet effective action is briefly discussed.


1991 ◽  
Vol 06 (23) ◽  
pp. 2143-2154 ◽  
Author(s):  
G. A. KHELASHVILI ◽  
V. I. OGIEVETSKY

The massive N = 2 supersymmetric Yang–Mills theory is investigated. Its non-renormalizability is revealed starting from the fourth order of the perturbation theory. The N = 2 harmonic superspace approach and the Stueckelberg-like formalism are used. The Stueckelberg fields form some nonlinear sigma model. Non-renormalizability of the latter produces non-renormalizability of the N = 2 supersymmetric Yang–Mills theory.


Sign in / Sign up

Export Citation Format

Share Document