scholarly journals Testing one-loop galaxy bias: Joint analysis of power spectrum and bispectrum

2021 ◽  
Vol 103 (12) ◽  
Author(s):  
Alexander Eggemeier ◽  
Román Scoccimarro ◽  
Robert E. Smith ◽  
Martin Crocce ◽  
Andrea Pezzotta ◽  
...  
2014 ◽  
Vol 10 (S306) ◽  
pp. 202-205 ◽  
Author(s):  
Federico Bianchini ◽  
Andrea Lapi

AbstractWe present the first measurement of the correlation between the map of the CMB lensing potential derived from the Planck nominal mission data and z ≳ 1.5 galaxies detected by Herschel-ATLAS (H-ATLAS) survey covering about 550 deg2. We detect the cross-power spectrum with a significance of ∼ 8.5σ, ruling out the absence of correlation at 9σ. We check detection with a number of null tests. The amplitude of cross-correlation and the galaxy bias are estimated using joint analysis of the cross-power spectrum and the galaxy survey auto-spectrum, which allows to break degeneracy between these parameters. The estimated galaxy bias is consistent with previous estimates of the bias for the H-ATLAS data, while the cross-correlation amplitude is higher than expected for a ΛCDM model. The content of this work is to appear in a forthcoming paper Bianchini, et al. (2014).


2019 ◽  
Vol 489 (2) ◽  
pp. 2887-2906 ◽  
Author(s):  
S Lee ◽  
E M Huff ◽  
A J Ross ◽  
A Choi ◽  
C Hirata ◽  
...  

ABSTRACT We present a sample of galaxies with the Dark Energy Survey (DES) photometry that replicates the properties of the BOSS CMASS sample. The CMASS galaxy sample has been well characterized by the Sloan Digital Sky Survey (SDSS) collaboration and was used to obtain the most powerful redshift-space galaxy clustering measurements to date. A joint analysis of redshift-space distortions (such as those probed by CMASS from SDSS) and a galaxy–galaxy lensing measurement for an equivalent sample from DES can provide powerful cosmological constraints. Unfortunately, the DES and SDSS-BOSS footprints have only minimal overlap, primarily on the celestial equator near the SDSS Stripe 82 region. Using this overlap, we build a robust Bayesian model to select CMASS-like galaxies in the remainder of the DES footprint. The newly defined DES-CMASS (DMASS) sample consists of 117 293 effective galaxies covering $1244\,\deg ^2$. Through various validation tests, we show that the DMASS sample selected by this model matches well with the BOSS CMASS sample, specifically in the South Galactic cap (SGC) region that includes Stripe 82. Combining measurements of the angular correlation function and the clustering-z distribution of DMASS, we constrain the difference in mean galaxy bias and mean redshift between the BOSS CMASS and DMASS samples to be $\Delta b = 0.010^{+0.045}_{-0.052}$ and $\Delta z = \left(3.46^{+5.48}_{-5.55} \right) \times 10^{-3}$ for the SGC portion of CMASS, and $\Delta b = 0.044^{+0.044}_{-0.043}$ and $\Delta z= (3.51^{+4.93}_{-5.91}) \times 10^{-3}$ for the full CMASS sample. These values indicate that the mean bias of galaxies and mean redshift in the DMASS sample are consistent with both CMASS samples within 1σ.


2005 ◽  
Vol 201 ◽  
pp. 368-376
Author(s):  
S. L. Bridle

We compare and combine likelihood functions of the cosmological parameters Ωm, h and σ8 from the CMB, type Ia supernovae and from probes of large scale structure. We include the recent results from the CMB experiments BOOMERANG and MAXIMA-1. Our analysis assumes a flat ACDM cosmology with a scale-invariant adiabatic initial power spectrum. First we consider three data sets that directly probe the mass in the Universe, without the need to relate the galaxy distribution to the underlying mass via a “biasing” relation: peculiar velocities, CMB and supernovae. We assume a baryonic fraction as inferred from Big-Bang Nucleosynthesis and find that all three data sets agree well, overlapping significantly at the 2σ level. This therefore justifies a joint analysis, in which we find a joint best fit point and 95% confidence limits of Ωm = 0.28 (0.17, 0.39), h = 0.74 (0.64, 0.86), and σ8 = 1.17 (0.98,1.37). Secondly we extend our earlier work on combining CMB, supernovae, cluster number counts, IRAS galaxy redshift survey data to include BOOMERANG and MAXIMA-1 data and to allow a free Ωbh2. We find that, given our assumption of a scale invariant initial power spectrum (n = 1), we obtain the robust result of Ωbh2 = 0.031 ± 0.03, which is dominated by the CMB constraint.


2021 ◽  
Vol 104 (4) ◽  
Author(s):  
Andrea Pezzotta ◽  
Martin Crocce ◽  
Alexander Eggemeier ◽  
Ariel G. Sánchez ◽  
Román Scoccimarro

2020 ◽  
Vol 495 (4) ◽  
pp. 4006-4027 ◽  
Author(s):  
Cora Uhlemann ◽  
Oliver Friedrich ◽  
Francisco Villaescusa-Navarro ◽  
Arka Banerjee ◽  
Sandrine Codis

ABSTRACT We comprehensively analyse the cosmology dependence of counts-in-cells statistics. We focus on the shape of the one-point probability distribution function (PDF) of the matter density field at mildly non-linear scales. Based on large-deviation statistics, we parametrize the cosmology dependence of the matter PDF in terms of the linear power spectrum, the growth factor, the spherical collapse dynamics, and the non-linear variance. We extend our formalism to include massive neutrinos, finding that the total matter PDF is highly sensitive to the total neutrino mass Mν and can disentangle it from the clustering amplitude σ8. Using more than a million PDFs extracted from the Quijote simulations, we determine the response of the matter PDF to changing parameters in the νΛCDM model and successfully cross-validate the theoretical model and the simulation measurements. We present the first νΛCDM Fisher forecast for the matter PDF at multiple scales and redshifts, and its combination with the matter power spectrum. We establish that the matter PDF and the matter power spectrum are highly complementary at mildly non-linear scales. The matter PDF is particularly powerful for constraining the matter density Ωm, clustering amplitude σ8 and the total neutrino mass Mν. Adding the mildly non-linear matter PDF to the mildly non-linear matter power spectrum improves constraints on Ωm by a factor of 5 and σ8 by a factor of 2 when considering the three lowest redshifts. In our joint analysis of the matter PDF and matter power spectrum at three redshifts, the total neutrino mass is constrained to better than 0.01 eV with a total volume of 6 (Gpc h−1)3. We discuss how density-split statistics can be used to translate those encouraging results for the matter PDF into realistic observables in galaxy surveys.


2020 ◽  
Vol 102 (10) ◽  
Author(s):  
Alexander Eggemeier ◽  
Román Scoccimarro ◽  
Martin Crocce ◽  
Andrea Pezzotta ◽  
Ariel G. Sánchez

2020 ◽  
Vol 498 (1) ◽  
pp. 464-483 ◽  
Author(s):  
Oliver Friedrich ◽  
Cora Uhlemann ◽  
Francisco Villaescusa-Navarro ◽  
Tobias Baldauf ◽  
Marc Manera ◽  
...  

ABSTRACT We investigate the possibility to detect primordial non-Gaussianity by analysing the bulk of the probability distribution function (PDF) of late-time cosmic density fluctuations. For this purpose, we devise a new method to predict the impact of general non-Gaussian initial conditions on the late-time density PDF. At redshift z = 1 and for a smoothing scale of 30 Mpc h−1 our predictions agree with the high-resolution Quijote N-body simulations to $\sim 0.2{{\ \rm per\ cent}}$ precision. This is within cosmic variance of a ∼100(Gpc h−1)3 survey volume. When restricting to this 30 Mpc h−1 smoothing scale and to mildly non-linear densities (δ[30 Mpc h−1] ∈ [−0.3, 0.4]) and also marginalizing over potential ignorance of the amplitude of the non-linear power spectrum an analysis of the PDF for such a survey volume can still measure the amplitude of different primordial bispectrum shapes to an accuracy of $\Delta f_{\mathrm{NL}}^{\mathrm{loc}} = \pm 7.4\ ,\ \Delta f_{\mathrm{NL}}^{\mathrm{equi}} = \pm 22.0\ ,\ \Delta f_{\mathrm{NL}}^{\mathrm{ortho}} = \pm 46.0$. When pushing to smaller scales and assuming a joint analysis of the PDF with smoothing radii of 30 and 15 Mpc h−1 (δ[15 Mpc h−1] ∈ [−0.4, 0.5]) this improves to $\Delta f_{\mathrm{NL}}^{\mathrm{loc}} = \pm 3.3\ ,\ \Delta f_{\mathrm{NL}}^{\mathrm{equi}} = \pm 11.0\ ,\ \Delta f_{\mathrm{NL}}^{\mathrm{ortho}} = \pm 17.0$ – even when marginalizing over the non-linear variances at both scales as two free parameters. Especially, such an analysis could simultaneously measure fNL and the amplitude and slope of the non-linear power spectrum. However, at 15 Mpc h−1 our predictions are only accurate to $\lesssim 0.8{{\ \rm per\ cent}}$ for the considered density range. We discuss how this has to be improved in order to push to these small scales and make full use of upcoming surveys with a PDF-based analysis.


2015 ◽  
Vol 30 (01) ◽  
pp. 1550001 ◽  
Author(s):  
Koichi Hirano

Constraints on neutrino masses are estimated based on future observations of the cosmic microwave background (CMB), which includes the B-mode polarization produced by CMB lensing from the Planck satellite, and the growth rate of cosmic structure from the Euclid redshift survey by using the Markov–Chain Monte-Carlo (MCMC) method. The error in the bound on the total neutrino mass is estimated to be Δ ∑ mν = 0.075 eV with a 68% confidence level. By using the growth rate rather than the galaxy power spectrum, accurate constraints are obtained, since the growth rate is less influenced by the uncertainty regarding galaxy bias than by the galaxy power spectrum.


Sign in / Sign up

Export Citation Format

Share Document