scholarly journals Fisher for complements: extracting cosmology and neutrino mass from the counts-in-cells PDF

2020 ◽  
Vol 495 (4) ◽  
pp. 4006-4027 ◽  
Author(s):  
Cora Uhlemann ◽  
Oliver Friedrich ◽  
Francisco Villaescusa-Navarro ◽  
Arka Banerjee ◽  
Sandrine Codis

ABSTRACT We comprehensively analyse the cosmology dependence of counts-in-cells statistics. We focus on the shape of the one-point probability distribution function (PDF) of the matter density field at mildly non-linear scales. Based on large-deviation statistics, we parametrize the cosmology dependence of the matter PDF in terms of the linear power spectrum, the growth factor, the spherical collapse dynamics, and the non-linear variance. We extend our formalism to include massive neutrinos, finding that the total matter PDF is highly sensitive to the total neutrino mass Mν and can disentangle it from the clustering amplitude σ8. Using more than a million PDFs extracted from the Quijote simulations, we determine the response of the matter PDF to changing parameters in the νΛCDM model and successfully cross-validate the theoretical model and the simulation measurements. We present the first νΛCDM Fisher forecast for the matter PDF at multiple scales and redshifts, and its combination with the matter power spectrum. We establish that the matter PDF and the matter power spectrum are highly complementary at mildly non-linear scales. The matter PDF is particularly powerful for constraining the matter density Ωm, clustering amplitude σ8 and the total neutrino mass Mν. Adding the mildly non-linear matter PDF to the mildly non-linear matter power spectrum improves constraints on Ωm by a factor of 5 and σ8 by a factor of 2 when considering the three lowest redshifts. In our joint analysis of the matter PDF and matter power spectrum at three redshifts, the total neutrino mass is constrained to better than 0.01 eV with a total volume of 6 (Gpc h−1)3. We discuss how density-split statistics can be used to translate those encouraging results for the matter PDF into realistic observables in galaxy surveys.

2020 ◽  
Vol 2020 (04) ◽  
pp. 030-030 ◽  
Author(s):  
Mario Ballardini ◽  
Riccardo Murgia ◽  
Marco Baldi ◽  
Fabio Finelli ◽  
Matteo Viel

2020 ◽  
Vol 500 (2) ◽  
pp. 2532-2542
Author(s):  
Linda Blot ◽  
Pier-Stefano Corasaniti ◽  
Yann Rasera ◽  
Shankar Agarwal

ABSTRACT Future galaxy surveys will provide accurate measurements of the matter power spectrum across an unprecedented range of scales and redshifts. The analysis of these data will require one to accurately model the imprint of non-linearities of the matter density field. In particular, these induce a non-Gaussian contribution to the data covariance that needs to be properly taken into account to realize unbiased cosmological parameter inference analyses. Here, we study the cosmological dependence of the matter power spectrum covariance using a dedicated suite of N-body simulations, the Dark Energy Universe Simulation–Parallel Universe Runs (DEUS-PUR) Cosmo. These consist of 512 realizations for 10 different cosmologies where we vary the matter density Ωm, the amplitude of density fluctuations σ8, the reduced Hubble parameter h, and a constant dark energy equation of state w by approximately $10{{\ \rm per\ cent}}$. We use these data to evaluate the first and second derivatives of the power spectrum covariance with respect to a fiducial Λ-cold dark matter cosmology. We find that the variations can be as large as $150{{\ \rm per\ cent}}$ depending on the scale, redshift, and model parameter considered. By performing a Fisher matrix analysis we explore the impact of different choices in modelling the cosmological dependence of the covariance. Our results suggest that fixing the covariance to a fiducial cosmology can significantly affect the recovered parameter errors and that modelling the cosmological dependence of the variance while keeping the correlation coefficient fixed can alleviate the impact of this effect.


2019 ◽  
Vol 491 (3) ◽  
pp. 3101-3107 ◽  
Author(s):  
M Cataneo ◽  
J D Emberson ◽  
D Inman ◽  
J Harnois-Déraps ◽  
C Heymans

ABSTRACT We analytically model the non-linear effects induced by massive neutrinos on the total matter power spectrum using the halo model reaction framework of Cataneo et al. In this approach, the halo model is used to determine the relative change to the matter power spectrum caused by new physics beyond the concordance cosmology. Using standard fitting functions for the halo abundance and the halo mass–concentration relation, the total matter power spectrum in the presence of massive neutrinos is predicted to per cent-level accuracy, out to $k=10 \,{ h}\,{\rm Mpc}^{-1}$. We find that refining the prescriptions for the halo properties using N-body simulations improves the recovered accuracy to better than 1 per cent. This paper serves as another demonstration for how the halo model reaction framework, in combination with a single suite of standard Λ cold dark matter (ΛCDM) simulations, can recover per cent-level accurate predictions for beyond ΛCDM matter power spectra, well into the non-linear regime.


2020 ◽  
Vol 498 (3) ◽  
pp. 3403-3419
Author(s):  
Sebastian Bohr ◽  
Jesús Zavala ◽  
Francis-Yan Cyr-Racine ◽  
Mark Vogelsberger ◽  
Torsten Bringmann ◽  
...  

ABSTRACT We propose two effective parameters that fully characterize galactic-scale structure formation at high redshifts (z ≳ 5) for a variety of dark matter (DM) models that have a primordial cutoff in the matter power spectrum. Our description is within the recently proposed ETHOS framework and includes standard thermal warm DM (WDM) and models with dark acoustic oscillations (DAOs). To define and explore this parameter space, we use high-redshift zoom-in simulations that cover a wide range of non-linear scales from those where DM should behave as CDM (k ∼ 10 h Mpc−1), down to those characterized by the onset of galaxy formation (k ∼ 500 h Mpc−1). We show that the two physically motivated parameters hpeak and kpeak, the amplitude and scale of the first DAO peak, respectively, are sufficient to parametrize the linear matter power spectrum and classify the DM models as belonging to effective non-linear structure formation regions. These are defined by their relative departure from cold DM (kpeak → ∞) and WDM (hpeak = 0) according to the non-linear matter power spectrum and halo mass function. We identify a region where the DAOs still leave a distinct signature from WDM down to z = 5, while a large part of the DAO parameter space is shown to be degenerate with WDM. Our framework can then be used to seamlessly connect a broad class of particle DM models to their structure formation properties at high redshift without the need of additional N-body simulations.


2019 ◽  
Vol 490 (3) ◽  
pp. 4237-4253 ◽  
Author(s):  
Florent Leclercq ◽  
Wolfgang Enzi ◽  
Jens Jasche ◽  
Alan Heavens

ABSTRACT We propose a new, likelihood-free approach to inferring the primordial matter power spectrum and cosmological parameters from arbitrarily complex forward models of galaxy surveys where all relevant statistics can be determined from numerical simulations, i.e. black boxes. Our approach, which we call simulator expansion for likelihood-free inference (selfi), builds upon approximate Bayesian computation using a novel effective likelihood, and upon the linearization of black-box models around an expansion point. Consequently, we obtain simple ‘filter equations’ for an effective posterior of the primordial power spectrum, and a straightforward scheme for cosmological parameter inference. We demonstrate that the workload is computationally tractable, fixed a priori, and perfectly parallel. As a proof of concept, we apply our framework to a realistic synthetic galaxy survey, with a data model accounting for physical structure formation and incomplete and noisy galaxy observations. In doing so, we show that the use of non-linear numerical models allows the galaxy power spectrum to be safely fitted up to at least kmax = 0.5 h Mpc−1, outperforming state-of-the-art backward-modelling techniques by a factor of ∼5 in the number of modes used. The result is an unbiased inference of the primordial matter power spectrum across the entire range of scales considered, including a high-fidelity reconstruction of baryon acoustic oscillations. It translates into an unbiased and robust inference of cosmological parameters. Our results pave the path towards easy applications of likelihood-free simulation-based inference in cosmology. We have made our code pyselfi and our data products publicly available at http://pyselfi.florent-leclercq.eu.


2019 ◽  
Vol 488 (2) ◽  
pp. 2121-2142 ◽  
Author(s):  
M Cataneo ◽  
L Lombriser ◽  
C Heymans ◽  
A J Mead ◽  
A Barreira ◽  
...  

ABSTRACT We present a general method to compute the non-linear matter power spectrum for dark energy (DE) and modified gravity scenarios with per cent-level accuracy. By adopting the halo model and non-linear perturbation theory, we predict the reaction of a lambda cold dark matter (ΛCDM) matter power spectrum to the physics of an extended cosmological parameter space. By comparing our predictions to N-body simulations we demonstrate that with no-free parameters we can recover the non-linear matter power spectrum for a wide range of different w0–wa DE models to better than 1 per cent accuracy out to k ≈ 1 $h \,{\rm Mpc}^{-1}$. We obtain a similar performance for both DGP and f(R) gravity, with the non-linear matter power spectrum predicted to better than 3 per cent accuracy over the same range of scales. When including direct measurements of the halo mass function from the simulations, this accuracy improves to 1 per cent. With a single suite of standard ΛCDM N-body simulations, our methodology provides a direct route to constrain a wide range of non-standard extensions to the concordance cosmology in the high signal-to-noise non-linear regime.


2020 ◽  
Vol 500 (3) ◽  
pp. 3162-3177
Author(s):  
Jurek B Bauer ◽  
David J E Marsh ◽  
Renée Hložek ◽  
Hamsa Padmanabhan ◽  
Alex Laguë

ABSTRACT We consider intensity mapping (IM) of neutral hydrogen (H i) in the redshift range 0 ≲ z ≲ 3 employing a halo model approach where H i is assumed to follow the distribution of dark matter (DM) haloes. If a portion of the DM is composed of ultralight axions, then the abundance of haloes is changed compared to cold DM below the axion Jeans mass. With fixed total H i density, $\Omega _{\rm H\, \rm {\small I}}$, assumed to reside entirely in haloes, this effect introduces a scale-independent increase in the H i power spectrum on scales above the axion Jeans scale, which our model predicts consistent with N-body simulations. Lighter axions introduce a scale-dependent feature even on linear scales due to its suppression of the matter power spectrum near the Jeans scale. We use the Fisher matrix formalism to forecast the ability of future H i surveys to constrain the axion fraction of DM and marginalize over astrophysical and model uncertainties. We find that a HIRAX-like survey is a very reliable IM survey configuration, being affected minimally by uncertainties due to non-linear scales, while the SKA1MID configuration is the most constraining as it is sensitive to non-linear scales. Including non-linear scales and combining a SKA1MID-like IM survey with the Simons Observatory CMB, the benchmark ‘fuzzy DM’ model with ma = 10−22 eV can be constrained at few per cent. This is almost an order of magnitude improvement over current limits from the Ly α forest. For lighter ULAs, this limit improves below 1 per cent, and allows the possibility to test the connection between axion models and the grand unification scale across a wide range of masses.


Sign in / Sign up

Export Citation Format

Share Document