Yang-Mills theory in the light-cone gauge in the Becchi-Rouet-Stora formalism

1986 ◽  
Vol 34 (12) ◽  
pp. 3842-3845 ◽  
Author(s):  
Su-Long Nyeo
2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Kirill Krasnov ◽  
Evgeny Skvortsov

Abstract We construct a new covariant action for “flat” self-dual gravity in four space-time dimensions. The action has just one term, but when expanded around an appropriate background gives rise to a kinetic term and a cubic interaction. Upon imposing the light-cone gauge, the action reproduces the expected chiral interaction of Siegel. The new action is in many ways analogous to the known covariant action for self-dual Yang-Mills theory. There is also a sense in which the new self-dual gravity action exhibits the double copy of self-dual Yang-Mills structure.


2002 ◽  
Vol 17 (11) ◽  
pp. 1491-1502 ◽  
Author(s):  
MITSUO ABE ◽  
NOBORU NAKANISHI

It is shown that the BRS (= Becchi–Rouet–Stora)-formulated two-dimensional BF theory in the light-cone gauge (coupled with chiral Dirac fields) is solved very easily in the Heisenberg picture. The structure of the exact solution is very similar to that of the BRS-formulated two-dimensional quantum gravity in the conformal gauge. In particular, the BRS Noether charge has anomaly. Based on this fact, a criticism is made on the reasoning of Kato and Ogawa, who derived the critical dimension D=26 of string theory on the basis of the anomaly of the BRS Noether charge. By adding the [Formula: see text] term to the BF-theory Lagrangian density, the exact solution to the two-dimensional Yang–Mills theory is also obtained.


1986 ◽  
Vol 64 (5) ◽  
pp. 624-632 ◽  
Author(s):  
H. C. Lee

Some aspects of recent development in the light-cone gauge and its special role in quantum-field theories are reviewed. Topics discussed include the two- and four-component formulations of the light-cone gauge, Slavnov–Taylor and Becchi– Rouet–Stora identities, quantum electrodynamics, quantum chromodynamics, renormalization of Yang–Mills theory and supersymmetric theory, gravity, and the quantum-induced compactification of Kaluza–Klein theories in the light-cone gauge.


1986 ◽  
Vol 33 (2) ◽  
pp. 617-618 ◽  
Author(s):  
A. Bassetto ◽  
M. Dalbosco ◽  
R. Soldati

1989 ◽  
Vol 04 (12) ◽  
pp. 3025-3032 ◽  
Author(s):  
M. SCHWEDA ◽  
H. SKARKE

We prove a theorem concerning the structure of one-loop integrals in the light cone gauge. With the help of this theorem, we analyze the structure of possible counterterms.


1997 ◽  
Vol 12 (06) ◽  
pp. 1075-1090 ◽  
Author(s):  
A. Bassetto ◽  
G. Nardelli

In 1+1 dimensions two different formulations exist of SU(N) Yang Mills theories in light-cone gauge; only one of them gives results which comply with the ones obtained in Feynman gauge. Moreover the theory, when considered 1+(D-1) dimensions, looks discontinuous in the limit D = 2. All those features are proven in Wilson loop calculations as well as in the study of the [Formula: see text] bound state integral equation in the large N limit.


1987 ◽  
Vol 73 (2) ◽  
pp. 1158-1165 ◽  
Author(s):  
A. A. Slavnov ◽  
S. A. Frolov

Sign in / Sign up

Export Citation Format

Share Document