conformal gauge
Recently Published Documents


TOTAL DOCUMENTS

125
(FIVE YEARS 15)

H-INDEX

20
(FIVE YEARS 1)

2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Lorenz Eberhardt ◽  
Sridip Pal

Abstract We investigate the disk partition function for the open string. This is a subtle problem because of the presence of a residual gauge group PSL(2, ℝ) on the worldsheet even after fixing the conformal gauge. It naively has infinite volume and leads to a vanishing answer. We use different methods that all demonstrate that PSL(2, ℝ) effectively behaves like a group with finite negative volume in the path integral, which leads to a simple prescription for the computation of the disk partition function. We apply our findings to give a simple rederivation of the D-brane tensions.


2021 ◽  
Vol 81 (7) ◽  
Author(s):  
M. O. Katanaev

AbstractThe global conformal gauge is playing the crucial role in string theory providing the basis for quantization. Its existence for two-dimensional Lorentzian metric is known locally for a long time. We prove that if a Lorentzian metric is given on a plain then the conformal gauge exists globally on the whole $${{\mathbb {R}}}^2$$ R 2 . Moreover, we prove the existence of the conformal gauge globally on the whole worldsheets represented by infinite strips with straight boundaries for open and closed bosonic strings. The global existence of the conformal gauge on the whole plane is also proved for the positive definite Riemannian metric.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Sergei M. Kuzenko ◽  
Michael Ponds

Abstract In a conformally flat three-dimensional spacetime, the linearised higher-spin Cotton tensor ℭα(n)(h) is the unique conserved conformal current which is a gauge-invariant descendant of the conformal gauge prepotential hα(n). The explicit form of ℭα(n)(h) is well known in Minkowski space. Here we solve the problem of extending the Minkowskian result to the case of anti-de Sitter (AdS) space and derive a closed-form expression for ℭα(n)(h) in terms of the AdS Lorentz covariant derivatives. It is shown that every conformal higher-spin action $$ {S}_{\mathrm{CS}}^{(n)}\left[h\right]\propto \int {\mathrm{d}}^3{xeh}^{\alpha (n)}{\mathrm{\mathfrak{C}}}_{\alpha (n)}(h) $$ S CS n h ∝ ∫ d 3 xeh α n ℭ α n h factorises into a product of (n − 1) first-order operators that are associated with the spin-n/2 partially massless AdS values. Our findings greatly facilitate the on-shell analysis of massive higher-spin gauge-invariant actions in AdS3. The main results are extended to the case of $$ \mathcal{N} $$ N = 1 AdS supersymmetry. In particular, we derive simple expressions for the higher-spin super-Cotton tensors in AdS3.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Gong jun Choi ◽  
Tsutomu T. Yanagida ◽  
Norimi Yokozaki

Abstract By extending a previously proposed conformal gauge mediation model, we construct a gauge-mediated SUSY breaking (GMSB) model where a SUSY-breaking scale, a messenger mass, the μ-parameter and the gravitino mass in a minimal supersymmetric (SUSY) Standard Model (MSSM) are all explained by a single mass scale, a R-symmetry breaking scale. We focus on a low scale SUSY-breaking scenario with the gravitino mass m3/2 = $$ \mathcal{O}(1)\mathrm{eV} $$ O 1 eV , which is free from the cosmological gravitino problem and relaxes the fine-tuning of the cosmological constant. Both the messenger and SUSY-breaking sectors are subject to a hidden strong dynamics with the conformality above the messenger mass threshold (and hence the name of the model “strongly interacting conformal gauge mediation”). In our model, the Higgs B-term is suppressed and a large tan β is predicted, resulting in the relatively light second CP-even Higgs and the CP-odd Higgs with a sizable production cross section. These Higgs bosons can be tested at future LHC experiments.


2020 ◽  
Vol 2020 (8) ◽  
Author(s):  
Sergei M. Kuzenko ◽  
Michael Ponds ◽  
Emmanouil S. N. Raptakis

Abstract For every conformal gauge field $$ {h}_{\alpha (n)\overset{\cdot }{\alpha }(m)} $$ h α n α ⋅ m in four dimensions, with n ≥ m > 0, a gauge-invariant action is known to exist in arbitrary conformally flat backgrounds. If the Weyl tensor is non-vanishing, however, gauge invariance holds for a pure conformal field in the following cases: (i) n = m = 1 (Maxwell’s field) on arbitrary gravitational backgrounds; and (ii) n = m + 1 = 2 (conformal gravitino) and n = m = 2 (conformal graviton) on Bach-flat backgrounds. It is believed that in other cases certain lower-spin fields must be introduced to ensure gauge invariance in Bach-flat backgrounds, although no closed-form model has yet been constructed (except for conformal maximal depth fields with spin s = 5/2 and s = 3). In this paper we derive such a gauge-invariant model describing the dynamics of a conformal gauge field $$ {h}_{\alpha (3)\overset{\cdot }{\alpha }} $$ h α 3 α ⋅ coupled to a self-dual two-form. Similar to other conformal higher-spin theories, it can be embedded in an off-shell superconformal gauge-invariant action. To this end, we introduce a new family of $$ \mathcal{N} $$ N = 1 superconformal gauge multiplets described by unconstrained prepotentials ϒα(n), with n > 0, and propose the corresponding gauge-invariant actions on conformally-flat backgrounds. We demonstrate that the n = 2 model, which contains $$ {h}_{\alpha (3)\overset{\cdot }{\alpha }} $$ h α 3 α ⋅ at the component level, can be lifted to a Bach-flat background provided ϒα(2) is coupled to a chiral spinor Ωα. We also propose families of (super)conformal higher-derivative non-gauge actions and new superconformal operators in any curved space. Finally, through considerations based on supersymmetry, we argue that the conformal spin-3 field should always be accompanied by a conformal spin-2 field in order to ensure gauge invariance in a Bach-flat background.


2020 ◽  
Vol 2020 ◽  
pp. 1-21
Author(s):  
Dariush Kaviani

We extend and complete our analysis arXiv:1608.02380 and study the induced world volume metrics and Hawking temperatures of all type IIB rotating probe Dp-branes, dual to the temperature of different flavors at finite R-charge, in the Ben Ami–Kuperstein–Sonnenschein holographic models including the effects of spontaneous conformal and chiral flavor symmetry breakdown. The model embeds type IIB probe flavor Dp-branes into the Klebanov-Witten gravity dual of conformal gauge theory, with the embedding parameter, given by the minimal radial extension of the probes, dual to the IR scale of conformal and chiral flavor symmetry breakdown. We show that when the minimal extension is positive definite, the induced world volume metrics of type IIB rotating probe branes admit thermal horizons and Hawking temperatures despite the absence of black holes in the bulk subject to the world volume and topology of the nontrivial internal cycle wrapped by the probe. We also derive the energy–stress tensor of the thermal probes and study their backreaction and energy dissipation. We show that at the IR scale the backreaction is nonnegligible and find the energy can flow from the probes to the bulk, dual to the energy dissipation from the flavor sectors into the gauge theory.


Author(s):  
Abraao J.S. Capistrano ◽  
Luís A. Cabral ◽  
José A. P. F. Marão ◽  
Carlos H. Coimbra-Araújo

From the linear Nash-Green fluctuations of background metric, we present the perturbation equations in an embedded four space-time. In the context of a five-dimensional bulk, we show that the perturbations are only propagated by the gravitational tensorial field equation. In a Newtonian conformal gauge, we study the matter density evolution in sub-horizon regime and on how such scale may be affected by the extrinsic curvature. We use the "extended Gold 2018'' growth dataset with 25 datapoints and the best fit Planck2018/LambdaCDM parameters. Hence, we determine the evolution equation for the density growth delta(a) as a result from the embedded equations of the background geometry. By using solar constraints, we analyse the evolution of the effective Newtonian constant Geff and showing that applying Taylor expansion to Geff (a) under the constraint of time-derivative of Geff(0)=G at a= 1 in matter domination era, we get an agreement with Big Bang Nucleosynthesis (BBN) and also an alleviation of the 3-sigma tension to 1-sigma contour between (sigma8-Omegam) of the observations from Cosmic Microwave Background (CMB) and Large Scale Structure (LSS) probes.


Sign in / Sign up

Export Citation Format

Share Document