Combining Cauchy and characteristic codes. I. The vacuum cylindrically symmetric problem

1995 ◽  
Vol 52 (12) ◽  
pp. 6863-6867 ◽  
Author(s):  
Chris J. S. Clarke ◽  
Ray A. d’Inverno ◽  
James A. Vickers
Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 640
Author(s):  
Vladimir Dzhunushaliev ◽  
Vladimir Folomeev ◽  
Abylaikhan Tlemisov

In this work, we study cylindrically symmetric solutions within SU(3) non-Abelian Proca theory coupled to a Higgs scalar field. The solutions describe tubes containing either the flux of a color electric field or the energy flux and momentum. It is shown that the existence of such tubes depends crucially on the presence of the Higgs field (there are no such solutions without this field). We examine the dependence of the integral characteristics (linear energy and momentum densities) on the values of the electromagnetic potentials at the center of the tube, as well as on the values of the coupling constant of the Higgs scalar field. The solutions obtained are topologically trivial and demonstrate the dual Meissner effect: the electric field is pushed out by the Higgs scalar field.


2021 ◽  
Vol 127 (2) ◽  
Author(s):  
Tiago de Faria Pinto ◽  
Jan Mathijssen ◽  
Randy Meijer ◽  
Hao Zhang ◽  
Alex Bayerle ◽  
...  

AbstractIn this work, the expansion dynamics of liquid tin micro-droplets irradiated by femtosecond laser pulses were investigated. The effects of laser pulse duration, energy, and polarization on ablation, cavitation, and spallation dynamics were studied using laser pulse durations ranging from 220 fs to 10 ps, with energies ranging from 1 to 5 mJ, for micro-droplets with an initial radius of 15 and 23 $$\upmu$$ μ m. Using linearly polarized laser pulses, cylindrically asymmetric shock waves were produced, leading to novel non-symmetric target shapes, the asymmetry of which was studied as a function of laser pulse parameters and droplet size. A good qualitative agreement was obtained between smoothed-particle hydrodynamics simulations and high-resolution stroboscopic experimental data of the droplet deformation dynamics.


1996 ◽  
Vol 53 (6) ◽  
pp. 3156-3161 ◽  
Author(s):  
Guillermo A. Mena Marugán

1990 ◽  
Vol 44 (1) ◽  
pp. 167-190 ◽  
Author(s):  
Alf H. Øien

Collisions in a cylindrically symmetric non-neutral (electron) plasma, where the Larmor radius is much smaller than the Debye length, and the consequent particle transport, are studied. The plasma is confined radially by a strong axial magnetic field and axially by electric potentials. Hence two particles may interact repeatedly. Eventually they drift too far away from each other poloidally to interact any more, owing to shear in the E × B drift. The consequent build-up of correlation is limited by correlational disintegration due to collisions with ‘third particles’ between the repeated interactions. A kinetic equation including these effects is derived, and the cross-field particle transport along the density gradient is found. An associated equilibration time is shown to scale as B and to be in good agreement with the experimentally obtained values of Briscoli, Malmberg and Fine.


2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Faizuddin Ahmed

We present a cylindrically symmetric, Petrov type D, nonexpanding, shear-free, and vorticity-free solution of Einstein’s field equations. The spacetime is asymptotically flat radially and regular everywhere except on the symmetry axis where it possesses a naked curvature singularity. The energy-momentum tensor of the spacetime is that for an anisotropic fluid which satisfies the different energy conditions. This spacetime is used to generate a rotating spacetime which admits closed timelike curves and may represent a Cosmic Time Machine.


Sign in / Sign up

Export Citation Format

Share Document