scholarly journals Model forSU(3)vacuum degeneracy using light-cone coordinates

2001 ◽  
Vol 63 (10) ◽  
Author(s):  
Grégory Soyez
Keyword(s):  
2000 ◽  
Vol 83-84 (1-3) ◽  
pp. 116-120 ◽  
Author(s):  
S Dalley
Keyword(s):  

2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Ulrich Haisch ◽  
Amando Hala

Abstract We estimate the form factors that parametrise the hadronic matrix elements of proton-to-pion transitions with the help of light-cone sum rules. These form factors are relevant for semi-leptonic proton decay channels induced by baryon-number violating dimension-six operators, as typically studied in the context of grand unified theories. We calculate the form factors in a kinematical regime where the momentum transfer from the proton to the pion is space-like and extrapolate our final results to the regime that is relevant for proton decay. In this way, we obtain estimates for the form factors that show agreement with the state-of-the-art calculations in lattice QCD, if systematic uncertainties are taken into account. Our work is a first step towards calculating more involved proton decay channels where lattice QCD results are not available at present.


1986 ◽  
Vol 33 (2) ◽  
pp. 415-420 ◽  
Author(s):  
M. Flato ◽  
C. Fronsdal ◽  
J. P. Gazeau

Universe ◽  
2021 ◽  
Vol 7 (8) ◽  
pp. 255
Author(s):  
Haifa I. Alrebdi ◽  
Thabit Barakat

Within the framework of the light-cone QCD sum rules method (LCSR’s), the radiative Δ(1600)→γN decay is studied. In particular, the magnetic dipole moment GM1(0) and the electric quadrupole moment GE1(0) are estimated. We also calculate the ratio REM=−GE1(0)GM1(0) and the decay rate. The predicted multipole moments and the decay rate strongly agree with the existing experimental results as well as with the other available phenomenological approaches.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Kirill Krasnov ◽  
Evgeny Skvortsov

Abstract We construct a new covariant action for “flat” self-dual gravity in four space-time dimensions. The action has just one term, but when expanded around an appropriate background gives rise to a kinetic term and a cubic interaction. Upon imposing the light-cone gauge, the action reproduces the expected chiral interaction of Siegel. The new action is in many ways analogous to the known covariant action for self-dual Yang-Mills theory. There is also a sense in which the new self-dual gravity action exhibits the double copy of self-dual Yang-Mills structure.


Sign in / Sign up

Export Citation Format

Share Document