scholarly journals Thermal field theory and generalized light front quantization

2003 ◽  
Vol 67 (8) ◽  
Author(s):  
H. Arthur Weldon
2007 ◽  
Vol 57 (3) ◽  
Author(s):  
L'ubomír Martinovič

Light front field theory: An advanced PrimerWe present an elementary introduction to quantum field theory formulated in terms of Dirac's light front variables. In addition to general principles and methods, a few more specific topics and approaches based on the author's work will be discussed. Most of the discussion deals with massive two-dimensional models formulated in a finite spatial volume starting with a detailed comparison between quantization of massive free fields in the usual field theory and the light front (LF) quantization. We discuss basic properties such as relativistic invariance and causality. After the LF treatment of the soluble Federbush model, a LF approach to spontaneous symmetry breaking is explained and a simple gauge theory - the massive Schwinger model in various gauges is studied. A LF version of bosonization and the massive Thirring model are also discussed. A special chapter is devoted to the method of discretized light cone quantization and its application to calculations of the properties of quantum solitons. The problem of LF zero modes is illustrated with the example of the two-dimensional Yukawa model. Hamiltonian perturbation theory in the LF formulation is derived and applied to a few simple processes to demonstrate its advantages. As a byproduct, it is shown that the LF theory cannot be obtained as a "light-like" limit of the usual field theory quantized on an initial space-like surface. A simple LF formulation of the Higgs mechanism is then given. Since our intention was to provide a treatment of the light front quantization accessible to postgradual students, an effort was made to discuss most of the topics pedagogically and a number of technical details and derivations are contained in the appendices.


2003 ◽  
Vol 91 (25) ◽  
Author(s):  
S. A. Morgan ◽  
M. Rusch ◽  
D. A. W. Hutchinson ◽  
K. Burnett

2011 ◽  
Vol 26 (32) ◽  
pp. 5387-5402 ◽  
Author(s):  
JOSÉ F. NIEVES

The Thermal Field Theory methods are applied to calculate the dispersion relation of the photon propagating modes in a strictly one-dimensional (1D) ideal plasma. The electrons are treated as a gas of particles that are confined to a 1D tube or wire, but are otherwise free to move, without reference to the electronic wave functions in the coordinates that are transverse to the idealized wire, or relying on any features of the electronic structure. The relevant photon dynamical variable is an effective field in which the two space coordinates that are transverse to the wire are collapsed. The appropriate expression for the photon free-field propagator in such a medium is obtained, the one-loop photon self-energy is calculated and the (longitudinal) dispersion relations are determined and studied in some detail. Analytic formulas for the dispersion relations are given for the case of a degenerate electron gas, and the results differ from the long-wavelength formula that is quoted in the literature for the strictly 1D plasma. The dispersion relations obtained resemble the linear form that is expected in realistic quasi-1D plasma systems for the entire range of the momentum, and which have been observed in this kind of system in recent experiments.


1999 ◽  
Vol 32 (7) ◽  
pp. 1185-1195 ◽  
Author(s):  
M Blasone ◽  
T S Evans ◽  
D A Steer ◽  
G Vitiello

2013 ◽  
Vol 88 (8) ◽  
Author(s):  
Peter Millington ◽  
Apostolos Pilaftsis

Sign in / Sign up

Export Citation Format

Share Document