scholarly journals Next-to-leading-order corrections to theγ*impact factor: First numerical results for the real corrections toγL*

2004 ◽  
Vol 70 (11) ◽  
Author(s):  
J. Bartels ◽  
A. Kyrieleis
2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Xu-Chang Zheng ◽  
Xing-Gang Wu ◽  
Xu-Dong Huang

Abstract In the paper, we calculate the fragmentation functions for c → ηc and b → ηb up to next-to-leading-order (NLO) QCD accuracy. The ultraviolet divergences in the real corrections are removed through operator renormalization under the modified min- imal subtraction scheme. We then obtain the fragmentation functions $$ {D}_{c\to {\eta}_c} $$ D c → η c (z, μF) and $$ {D}_{b\to {\eta}_b} $$ D b → η b (z, μF) up to NLO QCD accuracy, which are presented as figures and fitting functions. The numerical results show that the NLO corrections are significant. The sensitives of the fragmentation functions to the renormalization scale and the factorization scale are analyzed explicitly.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Edmond Iancu ◽  
Yair Mulian

Abstract Using the CGC effective theory together with the hybrid factorisation, we study forward dijet production in proton-nucleus collisions beyond leading order. In this paper, we compute the “real” next-to-leading order (NLO) corrections, i.e. the radiative corrections associated with a three-parton final state, out of which only two are being measured. To that aim, we start by revisiting our previous results for the three-parton cross-section presented in [1]. After some reshuffling of terms, we deduce new expressions for these results, which not only look considerably simpler, but are also physically more transparent. We also correct several errors in this process. The real NLO corrections to inclusive dijet production are then obtained by integrating out the kinematics of any of the three final partons. We explicitly work out the interesting limits where the unmeasured parton is either a soft gluon, or the product of a collinear splitting. We find the expected results in both limits: the B-JIMWLK evolution of the leading-order dijet cross-section in the first case (soft gluon) and, respectively, the DGLAP evolution of the initial and final states in the second case (collinear splitting). The “virtual” NLO corrections to dijet production will be presented in a subsequent publication.


Exacta ◽  
2009 ◽  
Vol 6 (2) ◽  
pp. 197-208
Author(s):  
Alex Alves Bandeira ◽  
Rita Moura Fortes ◽  
João Virgílio Merighi

The basic aim in this work is to present a new technique to analyze the contact surfaces developed by the contact between the tires and the structural pavements by numerical simulations, using 3D finite element formulations with contact mechanics. For this purpose, the Augmented Lagrangian method is used. This study is performed just putting the tires on the structural pavement. These tires and the structural pavement are discretized by finite elements under large 3D elastoplastic deformation. The real loads (of aircrafts, trucks or cars) are applied directly on each tire and by contact mechanics procedures, the real contact area between the tires and the pavement surface is computed. The penetration conditions and the contact interfaces are investigated in details. Furthermore, the pressure developed at the contact surfaces is automatically calculated and transferred to the structural pavement by contact mechanics techniques. The purpose of this work research is to show that the contact area is not circular and the finite element techniques can calculate automatically the real contact area, the real geometry and its stresses and strains. In the end of this work, numerical results in terms of geometry, stress and strain are presented and compared to show the ability of the algorithm. These numerical results are also compared with the numerical results obtained by the commercial program ANSYS.


2014 ◽  
Vol 889 ◽  
pp. 549-579 ◽  
Author(s):  
M. Hentschinski ◽  
J.D. Madrigal Martínez ◽  
B. Murdaca ◽  
A. Sabio Vera

2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Andrew J. Larkoski

Abstract Jet grooming has emerged as a necessary and powerful tool in a precision jet physics program. In this paper, we present three results on jet grooming in perturbation theory, focusing on heavy jet mass in e+e−→ hadrons collisions, groomed with the modified mass drop tagger. First, we calculate the analytic cross section at leading-order. Second, using the leading-order result and numerical results through next-to-next-to-leading order, we show that cusps in the distribution on the interior of phase space at leading-order are softened at higher orders. Finally, using analytic and numerical results, we show that terms that violate the assumptions of the factorization theorem for groomed jet mass are numerically much smaller than expected from power counting. These results provide important information regarding the convergence of perturbation theory for groomed jet observables and reliable estimates for residual uncertainties in a precision calculation.


Sign in / Sign up

Export Citation Format

Share Document