scholarly journals Testing properties of the Galactic center black hole using stellar orbits

2010 ◽  
Vol 81 (6) ◽  
Author(s):  
David Merritt ◽  
Tal Alexander ◽  
Seppo Mikkola ◽  
Clifford M. Will
2009 ◽  
Vol 692 (2) ◽  
pp. 1075-1109 ◽  
Author(s):  
S. Gillessen ◽  
F. Eisenhauer ◽  
S. Trippe ◽  
T. Alexander ◽  
R. Genzel ◽  
...  

2021 ◽  
Vol 103 (8) ◽  
Author(s):  
Hong Qi ◽  
Richard O’Shaughnessy ◽  
Patrick Brady

2012 ◽  
Vol 8 (S289) ◽  
pp. 29-35 ◽  
Author(s):  
Stefan Gillessen ◽  
Frank Eisenhauer ◽  
Tobias K. Fritz ◽  
Oliver Pfuhl ◽  
Thomas Ott ◽  
...  

AbstractOne of the Milky Way's fundamental parameters is the distance of the Sun from the Galactic Center, R0. This article reviews the various ways of estimating R0, placing special emphasis on methods that have become possible recently. In particular, we focus on the geometric distance estimate made possible thanks to observations of individual stellar orbits around the massive black hole at the center of the Galaxy. The specific issues of concern there are the degeneracies with other parameters, most importantly the mass of the black hole and the definition of the reference frame. The current uncertainty is nevertheless only a few percent, with error bars shrinking every year.


2007 ◽  
Vol 3 (S248) ◽  
pp. 466-469
Author(s):  
S. Gillessen ◽  
R. Genzel ◽  
F. Eisenhauer ◽  
T. Ott ◽  
S. Trippe ◽  
...  

AbstractIn 1992, we obtained the first observations of S2 a star close to the supermassive black hole at the Galactic Center. In 2002, S2 passed its periastron and in 2007, it completed a first fully observed revolution. This orbit allowed us to determine the mass of and the distance to the supermassive black hole with unprecedented accuracy. Here we present a re-analysis of the data set, enhancing the astrometric accuracy to 0.5 mas and increasing the number of well-determined stellar orbits to roughly 15. This allows to constrain the extended mass distribution around the massive black hole and will lead in the near future to the detection of post-Newtonian effects. We will also give an outlook on the potential of interferometric near-infrared astrometry with 10 microarcsecond accuracy from the VLTI.


2016 ◽  
Vol 11 (S322) ◽  
pp. 239-240
Author(s):  
Gregory D. Martinez ◽  
Kelly Kosmo ◽  
Aurelien Hees ◽  
Joseph Ahn ◽  
Andrea Ghez

AbstractOver two decades of astrometric and radial velocity data of short period stars at the Galactic center has the potential to provide unprecedented tests of General Relativity and insight into the astrophysics of the super-massive black hole. Fundamental to this is understanding the underlying statistical issues of fitting stellar orbits. Unintended prior effects can obscure actual physical effects from General Relativity and underlying extended mass distribution. At the heart of this is dealing with large parameter spaces inherent to multi-star fitting and ensuring acceptable coverage properties of the resulting confidence intervals in the Bayesian framework. This proceeding will detail some of the UCLA group's analysis and work in addressing these statistical issues.


2005 ◽  
Vol 635 (1) ◽  
pp. 341-348 ◽  
Author(s):  
Yuri Levin ◽  
Alice Wu ◽  
Ed Thommes

2019 ◽  
Vol 873 (1) ◽  
pp. 65 ◽  
Author(s):  
Shoko Sakai ◽  
Jessica R. Lu ◽  
Andrea Ghez ◽  
Siyao Jia ◽  
Tuan Do ◽  
...  

2017 ◽  
Vol 118 (21) ◽  
Author(s):  
A. Hees ◽  
T. Do ◽  
A. M. Ghez ◽  
G. D. Martinez ◽  
S. Naoz ◽  
...  

2009 ◽  
Vol 5 (S267) ◽  
pp. 330-330
Author(s):  
Evgeny Griv

Most, if not all, galaxies with a significant bulge component harbor a central supermassive black hole. In our own Milky Way Galaxy, a disk of stars at a distance r ~ 0.05–1 pc orbits the radio source Sgr A* at the center. Stellar orbits show that the gravitational potential on a scale of ~ 0.5 pc is dominated by a concentrated mass of MBH ≈ 3.6 × 106M⊙, which is associated with a supermassive black hole. In addition to the black hole, the models require the presence of an extended mass of (0.5–1.5) × 106M⊙ in the central parsec, which can be explained well by the mass of the stars that make up the cluster. Thus, the Galactic center star cluster is composed of a central supermassive black hole and a self-gravitating disk that is several Gyrs old and comprised of late-type CO absorption stars. Significant disk rotation in the sense of the general Galactic rotation has been detected. This system is probably a strongly warped, thin single disk; the mean eccentricity of the observed stellar orbits in the disk is e ≈ 0.36 ± 0.06.


2005 ◽  
Vol 620 (2) ◽  
pp. 744-757 ◽  
Author(s):  
A. M. Ghez ◽  
S. Salim ◽  
S. D. Hornstein ◽  
A. Tanner ◽  
J. R. Lu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document