scholarly journals Spectral properties of acoustic black hole radiation: Broadening the horizon

2011 ◽  
Vol 83 (8) ◽  
Author(s):  
Stefano Finazzi ◽  
Renaud Parentani
2003 ◽  
Vol 208 ◽  
pp. 427-428
Author(s):  
D. Molteni ◽  
F. Fauci ◽  
G. Gerardi ◽  
M. A. Valenza

Results of 3D numerical simulations of the gas transfer in close binary systems show that it is possible the production of accretion streams having low specific angular momentum in a region close to the accreting star. These streams are mainly placed above the orbital disc. The eventual formation of such bulges and shock heated flows is interesting in the context of advection dominated solutions and for the explanation of spectral properties of the Black Hole candidates in binary systems. We set up a parallelized version of 3D S.P.H. code, using domain decomposion. with increasing spatial resolution around the compact star.


1985 ◽  
Vol 85 ◽  
pp. 271-278 ◽  
Author(s):  
Tsung Dao Lee

2019 ◽  
Vol 877 (2) ◽  
pp. 65 ◽  
Author(s):  
Prantik Nandi ◽  
Sandip K. Chakrabarti ◽  
Santanu Mondal

2020 ◽  
Vol 497 (1) ◽  
pp. 1115-1126
Author(s):  
M Pereyra ◽  
D Altamirano ◽  
J M C Court ◽  
N Degenaar ◽  
R Wijnands ◽  
...  

ABSTRACT IGR J17091–3624 is a low-mass X-ray binary (LMXB), which received wide attention from the community thanks to its similarities with the bright black hole system GRS 1915+105. Both systems exhibit a wide range of highly structured X-ray variability during outburst, with time-scales from few seconds to tens of minutes, which make them unique in the study of mass accretion in LMXBs. In this work, we present a general overview into the long-term evolution of IGR J17091–3624, using Swift/XRT observations from the onset of the 2011–2013 outburst in 2011 February till the end of the last bright outburst in 2016 November. We found four re-flares during the decay of the 2011 outburst, but no similar re-flares appear to be present in the latter one. We studied, in detail, the period with the lowest flux observed in the last 10 yr, just at the tail end of the 2011–2013 outburst, using Chandra and XMM-Newton observations. We observed changes in flux as high as a factor of 10 during this period of relative quiescence, without strong evidence of softening in the spectra. This result suggests that the source has not been observed at its true quiescence so far. By comparing the spectral properties at low luminosities of IGR J17091–3624 and those observed for a well-studied population of LMXBs, we concluded that IGR J17091–3624 is most likely to host a black hole as a compact companion rather than a neutron star.


Nature ◽  
2019 ◽  
Vol 569 (7758) ◽  
pp. 634-635 ◽  
Author(s):  
Silke Weinfurtner

2015 ◽  
Vol 24 (12) ◽  
pp. 1544007 ◽  
Author(s):  
Shahar Hod

The holographic principle has taught us that, as far as their entropy content is concerned, black holes in (3 + 1)-dimensional curved spacetimes behave as ordinary thermodynamic systems in flat (2 + 1)-dimensional spacetimes. In this paper, we point out that the opposite behavior can also be observed in black-hole physics. To show this we study the quantum Hawking evaporation of near-extremal Reissner–Nordström (RN) black holes. We first point out that the black-hole radiation spectrum departs from the familiar radiation spectrum of genuine (3 + 1)-dimensional perfect black-body emitters. In particular, the would be black-body thermal spectrum is distorted by the curvature potential which surrounds the black-hole and effectively blocks the emission of low-energy quanta. Taking into account the energy-dependent gray-body factors which quantify the imprint of passage of the emitted radiation quanta through the black-hole curvature potential, we reveal that the (3 + 1)-dimensional black holes effectively behave as perfect black-body emitters in a flat (9 + 1)-dimensional spacetime.


2018 ◽  
Vol 33 (19) ◽  
pp. 1850108
Author(s):  
Hossein Ghaforyan ◽  
Somayyeh Shoorvazi ◽  
Alireza Sepehri ◽  
Tooraj Ghaffary

Recently, some authors showed that a classical collapse scenario ignores this richness of information in the resulting spectrum and a consistent quantum treatment of the entire collapse process might allow us to retrieve much more information from the spectrum of the final radiation. We confirm these results and show that by considering the quantum entanglement between metrics, we can uncover information of black holes. In our model, a density matrix is defined for the spaces, both inside and outside of the event horizon. These inside and outside spaces of black holes are obtained by tracing from a bigger space. An observer that lives in this big space can recover total information regarding the inside and outside of black hole.


2018 ◽  
Vol 14 (S346) ◽  
pp. 187-192
Author(s):  
S. Carpano ◽  
F. Haberl ◽  
P. Crowther ◽  
A. Pollock

Abstract. NGC 300 X-1 and IC 10 X-1 are currently the only two robust extragalactic candidates for being Wolf-Rayet/black hole X-ray binaries, the Galactic analogue being Cyg X-3. These systems are believed to be a late product of high-mass X-ray binary evolution and direct progenitors of black hole mergers. From the analysis of Swift data, the orbital period of NGC 300 X-1 was found to be 32.8 h. We here merge the full set of existing data of NGC 300 X-1, using XMM-Newton, Chandra and Swift observations to derive a more precise value of the orbital period of 32.7932 ± 0.0029 h above a confidence level of 99.99%. This allows us to phase connect the X-ray light curve of the source with radial velocity measurements of He II lines performed in 2010. We show that, as for IC 10 X-1 and Cyg X-3, the X-ray eclipse corresponds to maximum of the blueshift of the He II lines, instead of the expected zero velocity. This indicates that for NGC 300 X-1 as well, the wind of the WR star is completely ionised by the black hole radiation and that the emission lines come from the region of the WR star that is in the shadow. We also present for the first time the light curve of two recent very long XMM-Newton observations of the source, performed on the 16th to 20th of December 2016.


Sign in / Sign up

Export Citation Format

Share Document