scholarly journals Inclusion of the QCD next-to-leading order corrections in the quark-gluon Monte Carlo shower

2013 ◽  
Vol 87 (3) ◽  
Author(s):  
S. Jadach ◽  
A. Kusina ◽  
W. Płaczek ◽  
M. Skrzypek ◽  
M. Slawinska
Keyword(s):  
2015 ◽  
Vol 30 (31) ◽  
pp. 1546004 ◽  
Author(s):  
P. Kokkas

During the first years of the LHC operation a large amount of jet data was recorded by the ATLAS and CMS experiments. In this review several measurements of jet-related observables are presented, such as multi-jet rates and cross sections, ratios of jet cross sections, jet shapes and event shape observables. All results presented here are based on jet data collected at a centre-of-mass energy of 7 TeV. Data are compared to various Monte Carlo generators, as well as to theoretical next-to-leading-order calculations allowing a test of perturbative Quantum Chromodynamics in a previously unexplored energy region.


2010 ◽  
Vol 25 (36) ◽  
pp. 3027-3031
Author(s):  
JIAN WANG ◽  
GUOMING CHEN ◽  
WEIMIN WU

Most of current Monte Carlo studies on the Higgs searching are based on LO, or NLO calculation. However, in recent years, the next-to-next-to-leading order (NNLO) corrections have been computed for some physics process, and found that the cross section increases the kinematics changes. As the results, the analysis results could be impacted by these high order QCD corrections. We use standard Monte Carlo generator for LO, as well as MC@NLO for NLO and ResBos for NNLO at 7 TeV of LHC to evaluate this impact for physics channel of the Higgs, mass at 165 GeV, to WW, then W decay to lepton and neutrino as the final states. We found the signal rate could be effected by ratio of 1:2.6:3.4 for LO, NLO and NNLO using the same standard H→WW→lνlν searching analysis process.6


2007 ◽  
Vol 2007 (09) ◽  
pp. 126-126 ◽  
Author(s):  
Stefano Frixione ◽  
Giovanni Ridolfi ◽  
Paolo Nason

2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Riccardo Torre ◽  
Lorenzo Ricci ◽  
Andrea Wulzer

Abstract High-energy neutral and charged Drell-Yan differential cross-section measurements are powerful probes of quark-lepton contact interactions that produce growing-with-energy effects. This paper provides theoretical predictions of the new physics effects at the Next-to-Leading order in QCD and including one-loop EW corrections at the single-logarithm accuracy. The predictions are obtained from SM Monte Carlo simulations through analytic reweighting. This eliminates the need of performing a scan on the new physics parameter space, enabling the global exploration of all the relevant interactions. Furthermore, our strategy produces consistently showered events to be employed for a direct comparison of the new physics predictions with the data, or to validate the unfolding procedure than underlies the cross-section measurements. Two particularly relevant interactions, associated with the W and Y parameters of EW precision tests, are selected for illustration. Projections are presented for the sensitivity of the LHC and of the HL-LHC measurements. The impact on the sensitivity of several sources of uncertainties is quantified.


Sign in / Sign up

Export Citation Format

Share Document