THE IMPACT OF LO, NLO AND NNLO FOR THE HIGGS SEARCHING AT $\sqrt{s} = 7$ TeV OF LHC

2010 ◽  
Vol 25 (36) ◽  
pp. 3027-3031
Author(s):  
JIAN WANG ◽  
GUOMING CHEN ◽  
WEIMIN WU

Most of current Monte Carlo studies on the Higgs searching are based on LO, or NLO calculation. However, in recent years, the next-to-next-to-leading order (NNLO) corrections have been computed for some physics process, and found that the cross section increases the kinematics changes. As the results, the analysis results could be impacted by these high order QCD corrections. We use standard Monte Carlo generator for LO, as well as MC@NLO for NLO and ResBos for NNLO at 7 TeV of LHC to evaluate this impact for physics channel of the Higgs, mass at 165 GeV, to WW, then W decay to lepton and neutrino as the final states. We found the signal rate could be effected by ratio of 1:2.6:3.4 for LO, NLO and NNLO using the same standard H→WW→lνlν searching analysis process.6

2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Riccardo Torre ◽  
Lorenzo Ricci ◽  
Andrea Wulzer

Abstract High-energy neutral and charged Drell-Yan differential cross-section measurements are powerful probes of quark-lepton contact interactions that produce growing-with-energy effects. This paper provides theoretical predictions of the new physics effects at the Next-to-Leading order in QCD and including one-loop EW corrections at the single-logarithm accuracy. The predictions are obtained from SM Monte Carlo simulations through analytic reweighting. This eliminates the need of performing a scan on the new physics parameter space, enabling the global exploration of all the relevant interactions. Furthermore, our strategy produces consistently showered events to be employed for a direct comparison of the new physics predictions with the data, or to validate the unfolding procedure than underlies the cross-section measurements. Two particularly relevant interactions, associated with the W and Y parameters of EW precision tests, are selected for illustration. Projections are presented for the sensitivity of the LHC and of the HL-LHC measurements. The impact on the sensitivity of several sources of uncertainties is quantified.


2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Claude Duhr ◽  
Falko Dulat ◽  
Bernhard Mistlberger

Abstract We present the production cross section for a lepton-neutrino pair at the Large Hadron Collider computed at next-to-next-to-next-to-leading order (N3LO) in QCD perturbation theory. We compute the partonic coefficient functions of a virtual W± boson at this order. We then use these analytic functions to study the progression of the perturbative series in different observables. In particular, we investigate the impact of the newly obtained corrections on the inclusive production cross section of W± bosons, as well as on the ratios of the production cross sections for W+, W− and/or a virtual photon. Finally, we present N3LO predictions for the charge asymmetry at the LHC.


2018 ◽  
Vol 192 ◽  
pp. 00014
Author(s):  
D.N. Triantafyllopoulos

We consider the next-to-leading order (NLO) calculation of single inclusive particle production at forward rapidities in proton-nucleus collisions and in the framework of the Color Glass Condensate (CGC). We focus on the quark channel and the corrections associated with the impact factor. In the first step of the evolution the kinematics of the emitted gluon is kept exactly (and not in the eikonal approximation), but such a treatment which includes NLO corrections is not explicitly separated from the high energy evolution. Thus, in this newly established “factorization scheme”, there is no “rapidity subtraction”. The latter suffers from fine tuning issues and eventually leads to an unphysical (negative) cross section. On the contrary, our reorganization of the perturbation theory leads by definition to a well-defined cross section and the numerical evaluation of the NLO correction is shown to have the correct size.


2020 ◽  
Vol 642 ◽  
pp. A41
Author(s):  
Richard Longland ◽  
Nicolas de Séréville

Context. Monte Carlo methods can be used to evaluate the uncertainty of a reaction rate that arises from many uncertain nuclear inputs. However, until now no attempt has been made to find the effect of correlated energy uncertainties in input resonance parameters. Aims. Our goal is to investigate the impact of correlated resonance energy uncertainties on reaction rates. Methods. Using a combination of numerical and Monte Carlo variation of resonance energies, the effect of correlations are investigated. Five reactions are considered: two fictional, illustrative cases and three reactions whose rates are of current interest. Results. The effect of correlations in resonance energies depends on the specific reaction cross section and temperatures considered. When several resonances contribute equally to a reaction rate, and when they are located on either side of the Gamow peak, correlations between their energies dilute their effect on reaction rate uncertainties. If they are both located above or below the maximum of the Gamow peak, however, correlations between their resonance energies can increase the reaction rate uncertainties. This effect can be hard to predict for complex reactions with wide and narrow resonances contributing to the reaction rate.


2020 ◽  
Vol 6 ◽  
pp. 8 ◽  
Author(s):  
Axel Laureau ◽  
Vincent Lamirand ◽  
Dimitri Rochman ◽  
Andreas Pautz

A correlated sampling technique has been implemented to estimate the impact of cross section modifications on the neutron transport and in Monte Carlo simulations in one single calculation. This implementation has been coupled to a Total Monte Carlo approach which consists in propagating nuclear data uncertainties with random cross section files. The TMC-CS (Total Monte Carlo with Correlated Sampling) approach offers an interesting speed-up of the associated computation time. This methodology is detailed in this paper, together with two application cases to validate and illustrate the gain provided by this technique: the highly enriched uranium/iron metal core reflected by a stainless-steel reflector HMI-001 benchmark, and the PETALE experimental programme in the CROCUS zero-power light water reactor.


Author(s):  
Mohammad Hiwa ◽  

This work gives a detailed analysis of the result of Monte Carlo physics practical using MCNP. This paper describes basic concepts of the Monte Carlo theory of radiation transport calculation and also discusses the variance and the history method as used in Monte Carlo Problem solving. Therefore, in this exercise the MCNP code has been used to solve and estimate the number of neutron flux. The paper investigated the impact of the primary radiation damage in iron by the neutron energy irradiation. The established measurement of radiation damage is the displacements per atom (dpa) in matter as a function of neutron energy. The simulations were carried out to calculate the dpa cross section.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Simone Caletti ◽  
Oleh Fedkevych ◽  
Simone Marzani ◽  
Daniel Reichelt ◽  
Steffen Schumann ◽  
...  

Abstract We present a phenomenological study of angularities measured on the highest transverse-momentum jet in LHC events that feature the associate production of a Z boson and one or more jets. In particular, we study angularity distributions that are measured on jets with and without the SoftDrop grooming procedure. We begin our analysis exploiting state-of-the-art Monte Carlo parton shower simulations and we quantitatively assess the impact of next-to-leading order (NLO) matching and merging procedures. We then move to analytic resummation and arrive at an all-order expression that features the resummation of large logarithms at next-to-leading logarithmic accuracy (NLL) and is matched to the exact NLO result. Our predictions include the effect of soft emissions at large angles, treated as a power expansion in the jet radius, and non-global logarithms. Furthermore, matching to fixed-order is performed in such a way to ensure what is usually referred to as NLL′ accuracy. Our results account for realistic experimental cuts and can be easily compared to upcoming measurements of jet angularities from the LHC collaborations.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Reza Goldouzian ◽  
Jeong Han Kim ◽  
Kevin Lannon ◽  
Adam Martin ◽  
Kelci Mohrman ◽  
...  

Abstract In this paper, we explore the impact of extra radiation on predictions of $$ pp\to \mathrm{t}\overline{\mathrm{t}}\mathrm{X},\mathrm{X}=\mathrm{h}/{\mathrm{W}}^{\pm }/\mathrm{Z} $$ pp → t t ¯ X , X = h / W ± / Z processes within the dimension-6 SMEFT framework. While full next-to-leading order calculations are of course preferred, they are not always practical, and so it is useful to be able to capture the impacts of extra radiation using leading-order matrix elements matched to the parton shower and merged. While a matched/merged leading-order calculation for $$ \mathrm{t}\overline{\mathrm{t}}\mathrm{X} $$ t t ¯ X is not expected to reproduce the next-to-leading order inclusive cross section precisely, we show that it does capture the relative impact of the EFT effects by considering the ratio of matched SMEFT inclusive cross sections to Standard Model values, $$ {\sigma}_{\mathrm{SM}\mathrm{EFT}}\left(\mathrm{t}\overline{\mathrm{t}}\mathrm{X}+\mathrm{j}\right)/{\sigma}_{\mathrm{SM}}\left(\mathrm{t}\overline{\mathrm{t}}\mathrm{X}+\mathrm{j}\right)\equiv \mu $$ σ SMEFT t t ¯ X + j / σ SM t t ¯ X + j ≡ μ . Furthermore, we compare leading order calculations with and without extra radiation and find several cases, such as the effect of the operator $$ \left({\varphi}^{\dagger }i{\overleftrightarrow{D}}_{\mu}\varphi \right)\left(\overline{t}{\gamma}^{\mu }t\right) $$ φ † i D ↔ μ φ t ¯ γ μ t on $$ \mathrm{t}\overline{\mathrm{t}}\mathrm{h} $$ t t ¯ h and $$ \mathrm{t}\overline{\mathrm{t}}\mathrm{W} $$ t t ¯ W , for which the relative cross section prediction increases by more than 10% — significantly larger than the uncertainty derived by varying the input scales in the calculation, including the additional scales required for matching and merging. Being leading order at heart, matching and merging can be applied to all operators and processes relevant to $$ pp\to \mathrm{t}\overline{\mathrm{t}}\mathrm{X},\mathrm{X}=\mathrm{h}/{\mathrm{W}}^{\pm }/\mathrm{Z}+\mathrm{jet} $$ pp → t t ¯ X , X = h / W ± / Z + jet , is computationally fast and not susceptible to negative weights. Therefore, it is a useful approach in $$ \mathrm{t}\overline{\mathrm{t}}\mathrm{X} $$ t t ¯ X + jet studies where complete next-to-leading order results are currently unavailable or unwieldy.


2001 ◽  
Vol 16 (supp01a) ◽  
pp. 379-381 ◽  
Author(s):  
B. W. Harris ◽  
E. Laenen ◽  
L. Phaf ◽  
Z. Sullivan ◽  
S. Weinzierl

A new next-to-leading order Monte Carlo program for calculation of fully differential single top quark final states is described and first results presented. Both the s- and t-channel contributions are included.


Sign in / Sign up

Export Citation Format

Share Document