scholarly journals Bounds on pressure profile and internal compactness of static perfect fluid spheres with a positive cosmological constant

2014 ◽  
Vol 89 (2) ◽  
Author(s):  
F. Shojai ◽  
A. Shojai ◽  
M. Mousavi
2013 ◽  
Vol 22 (02) ◽  
pp. 1350009 ◽  
Author(s):  
LI ZOU ◽  
FANG-YU LI ◽  
HAO WEN

Exact solutions of the Einstein–Maxwell equations for spherically symmetric charged perfect fluid have been broadly studied so far. However, the cases with a nonzero cosmological constant are seldom focused. In the present paper, the Tolman–Oppenheimer–Volkoff (TOV) equations have been generalized from the neutral case of hydrostatic equilibrium to the charged case of hydroelectrostatic equilibrium, and base on it, for the first time we find a series of new exact solutions of Einstein–Maxwell's equations with a nonzero cosmological constant for static charged perfect fluid spheres. Moreover, two special TOV equations and two classical constant density interior solutions are also given.


2008 ◽  
Vol 77 (6) ◽  
Author(s):  
Christian G. Böhmer ◽  
Gyula Fodor

2009 ◽  
Vol 24 (31) ◽  
pp. 2551-2563 ◽  
Author(s):  
M. SHARIF ◽  
G. ABBAS

In this paper, the effect of electromagnetic field has been investigated on the spherically symmetric gravitational collapse with the perfect fluid in the presence of positive cosmological constant. Junction conditions between the static exterior and non-static interior spherically symmetric spacetimes are discussed. We study the apparent horizons and their physical significance. It is found that electromagnetic field reduces the bound of cosmological constant by reducing the pressure and hence collapsing process is faster as compared to the perfect fluid case. This work gives the generalization of the perfect fluid case to the charged perfect fluid. Results for the perfect fluid case are recovered.


2007 ◽  
Vol 22 (20) ◽  
pp. 1493-1502 ◽  
Author(s):  
M. SHARIF ◽  
ZAHID AHMAD

In this paper, the effect of a positive cosmological constant on spherically symmetric collapse with perfect fluid has been investigated. The matching conditions between static exterior and non-static interior spacetimes are given in the presence of a cosmological constant. We also study the apparent horizons and their physical significance. It is concluded that the cosmological constant slows down the collapse of matter and hence limit the size of the black hole. This analysis gives the generalization of the dust case to the perfect fluid. We recover the results of the dust case for p = 0.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
J. Gutowski ◽  
W. A. Sabra

Abstract We classify all supersymmetric solutions of minimal D = 4 gauged supergravity with (2) signature and a positive cosmological constant which admit exactly one Killing spinor. This classification produces a geometric structure which is more general than that found for previous classifications of N = 2 supersymmetric solutions of this theory. We illustrate how the N = 2 solutions which consist of a fibration over a 3-dimensional Lorentzian Gauduchon-Tod base space can be written in terms of this more generic geometric structure.


2018 ◽  
Vol 27 (04) ◽  
pp. 1850046 ◽  
Author(s):  
Xiaokai He ◽  
Jiliang Jing ◽  
Zhoujian Cao

Gravitational radiation plays an important role in astrophysics. Based on the fact that our universe is expanding, the gravitational radiation when a positive cosmological constant is presented has been studied along with two different ways recently, one is the Bondi–Sachs (BS) framework in which the result is shown by BS quantities in the asymptotic null structure, the other is the perturbation approach in which the result is presented by the quadrupoles of source. Therefore, it is worth to interpret the quantities in asymptotic null structure in terms of the information of the source. In this paper, we investigate this problem and find the explicit expressions of BS quantities in terms of the quadrupoles of source in asymptotically de Sitter spacetime. We also estimate how far away the source is, the cosmological constant may affect the detection of the gravitational wave.


Sign in / Sign up

Export Citation Format

Share Document