scholarly journals Direct detection of dark matter in universal bound states

2014 ◽  
Vol 89 (10) ◽  
Author(s):  
Ranjan Laha ◽  
Eric Braaten
2019 ◽  
Vol 100 (3) ◽  
Author(s):  
Ahmet Coskuner ◽  
Dorota M. Grabowska ◽  
Simon Knapen ◽  
Kathryn M. Zurek

2022 ◽  
Vol 82 (1) ◽  
Author(s):  
Salvatore Bottaro ◽  
Dario Buttazzo ◽  
Marco Costa ◽  
Roberto Franceschini ◽  
Paolo Panci ◽  
...  

AbstractWe study scenarios where Dark Matter is a weakly interacting particle (WIMP) embedded in an ElectroWeak multiplet. In particular, we consider real SU(2) representations with zero hypercharge, that automatically avoid direct detection constraints from tree-level Z-exchange. We compute for the first time all the calculable thermal masses for scalar and fermionic WIMPs, including Sommerfeld enhancement and bound states formation at leading order in gauge boson exchange and emission. WIMP masses of few hundred TeV are shown to be compatible both with s-wave unitarity of the annihilation cross-section, and perturbativity. We also provide theory uncertainties on the masses for all multiplets, which are shown to be significant for large SU(2) multiplets. We then outline a strategy to probe these scenarios at future experiments. Electroweak 3-plets and 5-plets have masses up to about 16 TeV and can efficiently be probed at a high energy muon collider. We study various experimental signatures, such as single and double gauge boson emission with missing energy, and disappearing tracks, and determine the collider energy and luminosity required to probe the thermal Dark Matter masses. Larger multiplets are out of reach of any realistic future collider, but can be tested in future $$\gamma $$ γ -ray telescopes and possibly in large-exposure liquid Xenon experiments.


Author(s):  
Kun Ting Eddie Chua ◽  
Karia Dibert ◽  
Mark Vogelsberger ◽  
Jesús Zavala

Abstract We study the effects of inelastic dark matter self-interactions on the internal structure of a simulated Milky Way (MW)-size halo. Self-interacting dark matter (SIDM) is an alternative to collisionless cold dark matter (CDM) which offers a unique solution to the problems encountered with CDM on sub-galactic scales. Although previous SIDM simulations have mainly considered elastic collisions, theoretical considerations motivate the existence of multi-state dark matter where transitions from the excited to the ground state are exothermic. In this work, we consider a self-interacting, two-state dark matter model with inelastic collisions, implemented in the Arepo code. We find that energy injection from inelastic self-interactions reduces the central density of the MW halo in a shorter timescale relative to the elastic scale, resulting in a larger core size. Inelastic collisions also isotropize the orbits, resulting in an overall lower velocity anisotropy for the inelastic MW halo. In the inner halo, the inelastic SIDM case (minor-to-major axis ratio s ≡ c/a ≈ 0.65) is more spherical than the CDM (s ≈ 0.4), but less spherical than the elastic SIDM case (s ≈ 0.75). The speed distribution f(v) of dark matter particles at the location of the Sun in the inelastic SIDM model shows a significant departure from the CDM model, with f(v) falling more steeply at high speeds. In addition, the velocity kicks imparted during inelastic collisions produce unbound high-speed particles with velocities up to 500 km s−1 throughout the halo. This implies that inelastic SIDM can potentially leave distinct signatures in direct detection experiments, relative to elastic SIDM and CDM.


2020 ◽  
Vol 2020 (2) ◽  
Author(s):  
M. E. Cabrera ◽  
J. A. Casas ◽  
A. Delgado ◽  
S. Robles

2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
D. Aristizabal Sierra ◽  
R. Branada ◽  
O. G. Miranda ◽  
G. Sanchez Garcia

Abstract With large active volume sizes dark matter direct detection experiments are sensitive to solar neutrino fluxes. Nuclear recoil signals are induced by 8B neutrinos, while electron recoils are mainly generated by the pp flux. Measurements of both processes offer an opportunity to test neutrino properties at low thresholds with fairly low backgrounds. In this paper we study the sensitivity of these experiments to neutrino magnetic dipole moments assuming 1, 10 and 40 tonne active volumes (representative of XENON1T, XENONnT and DARWIN), 0.3 keV and 1 keV thresholds. We show that with nuclear recoil measurements alone a 40 tonne detector could be as competitive as Borexino, TEXONO and GEMMA, with sensitivities of order 8.0 × 10−11μB at the 90% CL after one year of data taking. Electron recoil measurements will increase sensitivities way below these values allowing to test regions not excluded by astrophysical arguments. Using electron recoil data and depending on performance, the same detector will be able to explore values down to 4.0 × 10−12μB at the 90% CL in one year of data taking. By assuming a 200-tonne liquid xenon detector operating during 10 years, we conclude that sensitivities in this type of detectors will be of order 10−12μB. Reducing statistical uncertainties may enable improving sensitivities below these values.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Fabiola Fortuna ◽  
Pablo Roig ◽  
José Wudka

Abstract We analyze interactions between dark matter and standard model particles with spin one mediators in an effective field theory framework. In this paper, we are considering dark particles masses in the range from a few MeV to the mass of the Z boson. We use bounds from different experiments: Z invisible decay width, relic density, direct detection experiments, and indirect detection limits from the search of gamma-ray emissions and positron fluxes. We obtain solutions corresponding to operators with antisymmetric tensor mediators that fulfill all those requirements within our approach.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Chen-Kai Qiao ◽  
Shin-Ted Lin ◽  
Hsin-Chang Chi ◽  
Hai-Tao Jia

Abstract The millicharged particle has become an attractive topic to probe physics beyond the Standard Model. In direct detection experiments, the parameter space of millicharged particles can be constrained from the atomic ionization process. In this work, we develop the relativistic impulse approximation (RIA) approach, which can duel with atomic many-body effects effectively, in the atomic ionization process induced by millicharged particles. The formulation of RIA in the atomic ionization induced by millicharged particles is derived, and the numerical calculations are obtained and compared with those from free electron approximation and equivalent photon approximation. Concretely, the atomic ionizations induced by mllicharged dark matter particles and millicharged neutrinos in high-purity germanium (HPGe) and liquid xenon (LXe) detectors are carefully studied in this work. The differential cross sections, reaction event rates in HPGe and LXe detectors, and detecting sensitivities on dark matter particle and neutrino millicharge in next-generation HPGe and LXe based experiments are estimated and calculated to give a comprehensive study. Our results suggested that the next-generation experiments would improve 2-3 orders of magnitude on dark matter particle millicharge δχ than the current best experimental bounds in direct detection experiments. Furthermore, the next-generation experiments would also improve 2-3 times on neutrino millicharge δν than the current experimental bounds.


Sign in / Sign up

Export Citation Format

Share Document