scholarly journals Relativistic impulse approximation in the atomic ionization process induced by millicharged particles

2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Chen-Kai Qiao ◽  
Shin-Ted Lin ◽  
Hsin-Chang Chi ◽  
Hai-Tao Jia

Abstract The millicharged particle has become an attractive topic to probe physics beyond the Standard Model. In direct detection experiments, the parameter space of millicharged particles can be constrained from the atomic ionization process. In this work, we develop the relativistic impulse approximation (RIA) approach, which can duel with atomic many-body effects effectively, in the atomic ionization process induced by millicharged particles. The formulation of RIA in the atomic ionization induced by millicharged particles is derived, and the numerical calculations are obtained and compared with those from free electron approximation and equivalent photon approximation. Concretely, the atomic ionizations induced by mllicharged dark matter particles and millicharged neutrinos in high-purity germanium (HPGe) and liquid xenon (LXe) detectors are carefully studied in this work. The differential cross sections, reaction event rates in HPGe and LXe detectors, and detecting sensitivities on dark matter particle and neutrino millicharge in next-generation HPGe and LXe based experiments are estimated and calculated to give a comprehensive study. Our results suggested that the next-generation experiments would improve 2-3 orders of magnitude on dark matter particle millicharge δχ than the current best experimental bounds in direct detection experiments. Furthermore, the next-generation experiments would also improve 2-3 times on neutrino millicharge δν than the current experimental bounds.

1994 ◽  
Vol 03 (supp01) ◽  
pp. 43-52
Author(s):  
DAVID O. CALDWELL

The particle which constitutes more than 90% of the mass of the universe is not one of those in the Standard Model of particle physics. The search for this dark matter particle has now eliminated or severely restricted many candidates. While accelerator-produced results and indirect searches have helped, the most extensive exclusions have come from attempts at direct detection using semiconductor ionization detectors. The region excluded by direct detection extends over 12 orders of magnitude in particle mass and 20 orders of magnitude in cross section for Dirac particles. The need is now to get to cross sections less than one-tenth the weak cross section for Dirac masses >20 GeV and to use detectors having nuclei with spin for Majorana masses ≳10 GeV. Light neutrinos, while not detectable directly, can be eliminated as dominant dark matter if the 17-keV neutrino exists.


2015 ◽  
Vol 24 (07) ◽  
pp. 1530019 ◽  
Author(s):  
Mathias Garny ◽  
Alejandro Ibarra ◽  
Stefan Vogl

Three main strategies are being pursued to search for nongravitational dark matter signals: direct detection, indirect detection and collider searches. Interestingly, experiments have reached sensitivities in these three search strategies which may allow detection in the near future. In order to take full benefit of the wealth of experimental data, and in order to confirm a possible dark matter signal, it is necessary to specify the nature of the dark matter particle and of the mediator to the Standard Model. In this paper, we focus on a simplified model where the dark matter particle is a Majorana fermion that couples to a light Standard Model fermion via a Yukawa coupling with a scalar mediator. We review the observational signatures of this model and we discuss the complementarity among the various search strategies, with emphasis in the well motivated scenario where the dark matter particles are produced in the early universe via thermal freeze-out.


2009 ◽  
Vol 18 (08) ◽  
pp. 1195-1203 ◽  
Author(s):  
ANTON BAUSHEV

In this paper we consider dark matter particle annihilation in the gravitational field of black holes. We obtain the exact distribution function of the infalling dark matter particles, and compute the resulting flux and spectra of gamma rays coming from the objects. It is shown that the dark matter density significantly increases near a black hole. Particle collision energy becomes very high, affecting relative cross-sections of various annihilation channels. We also discuss possible experimental consequences of these effects.


2020 ◽  
Vol 12 (4) ◽  
pp. 107
Author(s):  
Josip Soln

Many astrophysical and cosmological observations suggest that the matter in the universe is mostly of the dark matter type whose behavior goes beyond the Standard Model description. Hence it is justifiable to take a drastically different approach to the dark matter particles which is here done through the bicubic equation of limiting particle velocity formalism. The bicubic equation discriminant $D$ in this undertaking satisfy $D\succeq 0 $ determined by the congruent parameter $z$ satisfying $z^{2}\succeq 1$, where formally $z(m)=3\sqrt{3}mv^{2}/2E$, \ with $m$, $v$, and $E$ being respectively, particle mass, velocity and energy. Also nonlinearly related to the the particle congruent parameter $z$ is the particle congruent angle $% \alpha $ . These two dimensionless\ parameters $z$ \ and $\alpha $ simplify expressions in the bicubic equation limiting particle velocity formalism when evaluating the three particle limiting velocities, $c_{1},$ $c_{2}$\ and $c_{3},$ (primary, obscure and normal) in terms of the ordinary particle velocity, $v$. Corresponding to these limiting velocities \ one then deduces, with equal values, dark matter particle energies $E\left(c_{1}\right) $, $E\left( c_{2}\right) $ and $E\left( c_{3}\right) $. The exemplary values of the congruent parameters are in these regions, $1\preceq z\prec 3\sqrt{3}$ $/2$ and $\pi /2\succeq \alpha \succeq \pi /3$ . Already within these ranges of congruent parameters, the bicubic formalism yields for squares of particle limiting velocities that $c_{1}^{2}$ and $c_{2}^{2}$ are complex conjugate to each other, $c_{1}^{2\ast }=c_{2}^{2}$ ,and that $% c_{3\text{ }}^{2}$is real. The imaginary portions of $c_{1}^{2}$ and $% c_{2}^{2}$ do not change the realities of numerically equal to each other dark matter energies $E\left( c_{i}\right) ,i=1,2,3.$ In fact, real $E\left(c_{1,2}\right) $ energies can be equally evaluated with $c_{1,2}^{2}$ or $% \func{Re}$ $c_{1,2}^{2}$ or even with $\func{Im}c_{1,2}^{2}$ so that in new notation, $E\left( _{1,2}^{2}\right) =E\left( \func{Re}c_{1,2}^{2}\right) =E\left( \func{Im}c_{1,2}^{2}\right) $ $=E\left( c_{3}^{2}\right) $ all with the same real values. However, in these notations, the real particle momenta are $\overrightarrow{p}\left( (\func{Re}c_{1,2}^{2}\right) $ and $\\overrightarrow{p}\left( (c_{3}^{2}\right) $, defined with respective energies and, while in similar forms , numerically are different from each other.


Author(s):  
Junji Hisano

It is now certain that dark matter exists in the Universe. However, we do not know its nature, nor are there dark matter candidates in the standard model of particle physics or astronomy However, weakly interacting massive particles (WIMPs) in models beyond the standard model are one of the leading candidates available to provide explanation. The dark matter direct detection experiments, in which the nuclei recoiled by WIMPs are sought, are one of the methods to elucidate the nature of dark matter. This chapter introduces an effective field theory (EFT) approach in order to evaluate the nucleon–WIMP elastic scattering cross section.


2013 ◽  
Vol 28 (15) ◽  
pp. 1350061 ◽  
Author(s):  
VAN E. MAYES

A survey of the mSUGRA/CMSSM parameter space is presented. The viable regions of the parameter space which satisfy standard experimental constraints are identified and discussed. These constraints include a 124–127 GeV mass for the lightest CP-even Higgs and the correct relic density for cold dark matter. The superpartner spectra corresponding to these regions fall within the well-known hyperbolic branch and are found to possess sub-TeV neutralinos and charginos, with mixed Bino/Higgsino LSP's with 200–800 GeV masses. In addition, the models possess ~3–4 TeV gluino masses and heavy squarks and sleptons with masses [Formula: see text]. Spectra with a Higgs mass mh≅125 GeV and a relic density 0.105 ≤ Ωχ0h2≤ 0.123 are found to require EWFT at around the one-percent level, while those spectra with a much lower relic density require EWFT of only a few percent. Moreover, the spin-independent neutralino–proton direct detection cross-sections are found to be below or within the XENON100 2σ limit and should be experimentally accessible now or in the near future. Finally, it is pointed out that the supersymmetry breaking soft terms corresponding to these regions of the mSUGRA/CMSSM parameter space (m0∝ m1/2with [Formula: see text] and A0= -m1/2) may be obtained from general flux-induced soft terms in Type IIB flux compactifications with D3 branes.


2010 ◽  
Vol 25 (11n12) ◽  
pp. 951-961 ◽  
Author(s):  
CHUNG-LIN SHAN

In this article I review model-independent procedures for extracting properties of Weakly Interacting Massive Particles (WIMPs) from direct Dark Matter detection experiments. Neither prior knowledge about the velocity distribution function of halo Dark Matter particles nor about their mass or cross sections on target nucleus is needed. The unique required information is measured recoil energies from experiments with different detector materials.


Author(s):  
JIAN-WEI CUI ◽  
HONG-JIAN HE ◽  
LAN-CHUN LÜ ◽  
FU-RONG YIN

Mirror universe is a fundamental way to restore parity symmetry in weak interactions. It naturally provides the lightest mirror nucleon as a unique GeV-scale asymmetric dark matter particle candidate. We conjecture that the mirror parity is respected by the fundamental interaction Lagrangian, and its possible soft breaking arises only from non-interaction terms in the gauge-singlet sector. We realize the spontaneous mirror parity violation by minimizing the vacuum Higgs potential, and derive the corresponding Higgs spectrum. We demonstrate that the common origin of CP violation in the visible and mirror neutrino seesaws can generate the right amount of matter and mirror dark matter via leptogenesis. We analyze the direct detections of GeV-scale mirror dark matter by TEXONO and CDEX experiments. We further study the predicted distinctive Higgs signatures at the LHC.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Juan Carlos Criado ◽  
Abdelhak Djouadi ◽  
Manuel Pérez-Victoria ◽  
José Santiago

Abstract We present an effective field theory describing the relevant interactions of the Standard Model with an electrically neutral particle that can account for the dark matter in the Universe. The possible mediators of these interactions are assumed to be heavy. The dark matter candidates that we consider have spin 0, 1/2 or 1, belong to an electroweak multiplet with arbitrary isospin and hypercharge and their stability at cosmological scales is guaranteed by imposing a ℤ2 symmetry. We present the most general framework for describing the interaction of the dark matter with standard particles, and construct a general non-redundant basis of the gauge-invariant operators up to dimension six. The basis includes multiplets with non-vanishing hypercharge, which can also be viable DM candidates. We give two examples illustrating the phenomenological use of such a general effective framework. First, we consider the case of a scalar singlet, provide convenient semi-analytical expressions for the relevant dark matter observables, use present experimental data to set constraints on the Wilson coefficients of the operators, and show how the interplay of different operators can open new allowed windows in the parameter space of the model. Then we study the case of a lepton isodoublet, which involves coannihilation processes, and we discuss the impact of the operators on the particle mass splitting and direct detection cross sections. These examples highlight the importance of the contribution of the various non-renormalizable operators, which can even dominate over the gauge interactions in certain cases.


Sign in / Sign up

Export Citation Format

Share Document