scholarly journals Numerical tests of the gauge/gravity duality conjecture for D0-branes at finite temperature and finite N

2016 ◽  
Vol 94 (8) ◽  
Author(s):  
Masanori Hanada ◽  
Yoshifumi Hyakutake ◽  
Goro Ishiki ◽  
Jun Nishimura
2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Koushik Ganesan ◽  
Andrew Lucas

Abstract We initiate a study of finite temperature transport in gapless and strongly coupled quantum theories with charge and dipole conservation using gauge-gravity duality. In a model with non-dynamical gravity, the bulk fields of our model include a suitable mixed-rank tensor which encodes the boundary multipole symmetry. We describe how such a theory can arise at low energies in a theory with a covariant bulk action. Studying response functions at zero density, we find that charge relaxes via a fourth-order subdiffusion equation, consistent with a recently-developed field-theoretic framework.


2020 ◽  
Vol 9 (3) ◽  
Author(s):  
Daniel Arean ◽  
Karl Landsteiner ◽  
Ignacio Salazar Landea

Quantum theory can be formulated with certain non-Hermitian Hamiltonians. An anti-linear involution, denoted by PT, is a symmetry of such Hamiltonians. In the PT-symmetric regime the non-Hermitian Hamiltonian is related to a Hermitian one by a Hermitian similarity transformation. We extend the concept of non-Hermitian quantum theory to gauge-gravity duality. Non-Hermiticity is introduced via boundary conditions in asymptotically AdS spacetimes. At zero temperature the PT phase transition is identified as the point at which the solutions cease to be real. Surprisingly at finite temperature real black hole solutions can be found well outside the quasi-Hermitian regime. These backgrounds are however unstable to fluctuations which establishes the persistence of the holographic dual of the PT phase transition at finite temperature.


2017 ◽  
Vol 32 (36) ◽  
pp. 1747018 ◽  
Author(s):  
Daisuke Kadoh

The duality conjecture states that [Formula: see text]-dimensional maximally supersymmetric Yang–Mills theory at finite temperature is expected to be dual to the non extremal black [Formula: see text]-brane at large N. We perform the lattice simulations of SYM for [Formula: see text] to investigate the validity of the conjecture. We show that the conjecture is qualitatively valid by comparing lattice results of the black [Formula: see text]-branes mass with analytic expectations in the gravity side.


2010 ◽  
Vol 2010 ◽  
pp. 1-141 ◽  
Author(s):  
Felix Rust

We use the gauge/gravity duality to investigate various properties of strongly coupled gauge theories, which we interpret as models for the quark-gluon plasma (QGP). In particular, we use variants of the D3/D7 setup as an implementation of the top-down approach of connecting string theory with phenomenologically relevant gauge theories. We focus on the effects of finite temperature and finite density on fundamental matter in the holographic quark-gluon plasma, which we model as theN=2hypermultiplet in addition to theN=4gauge multiplet of supersymmetric Yang-Mills theory. We use a setup in which we can describe the holographic plasma at finite temperature and either baryon or isospin density and investigate the properties of the system from three different viewpoints. (i) We study meson spectra. Our observations at finite temperature and particle density are in qualitative agreement with phenomenological models and experimental observations. They agree with previous publications in the according limits. (ii) We study the temperature and density dependence of transport properties of fundamental matter in the QGP. In particular, we obtain diffusion coefficients. Furthermore, in a kinetic model we estimate the effects of the coupling strength on meson diffusion and therewith equilibration processes in the QGP. (iii) We observe the effects of finite temperature and density on the phase structure of fundamental matter in the holographic QGP. We trace out the phase transition lines of different phases in the phase diagram.


2007 ◽  
Vol 2007 (01) ◽  
pp. 083-083 ◽  
Author(s):  
Riccardo Argurio ◽  
Matteo Bertolini ◽  
Sebastián Franco ◽  
Shamit Kachru

Sign in / Sign up

Export Citation Format

Share Document