scholarly journals In-Medium Effects in the Holographic Quark-Gluon Plasma

2010 ◽  
Vol 2010 ◽  
pp. 1-141 ◽  
Author(s):  
Felix Rust

We use the gauge/gravity duality to investigate various properties of strongly coupled gauge theories, which we interpret as models for the quark-gluon plasma (QGP). In particular, we use variants of the D3/D7 setup as an implementation of the top-down approach of connecting string theory with phenomenologically relevant gauge theories. We focus on the effects of finite temperature and finite density on fundamental matter in the holographic quark-gluon plasma, which we model as theN=2hypermultiplet in addition to theN=4gauge multiplet of supersymmetric Yang-Mills theory. We use a setup in which we can describe the holographic plasma at finite temperature and either baryon or isospin density and investigate the properties of the system from three different viewpoints. (i) We study meson spectra. Our observations at finite temperature and particle density are in qualitative agreement with phenomenological models and experimental observations. They agree with previous publications in the according limits. (ii) We study the temperature and density dependence of transport properties of fundamental matter in the QGP. In particular, we obtain diffusion coefficients. Furthermore, in a kinetic model we estimate the effects of the coupling strength on meson diffusion and therewith equilibration processes in the QGP. (iii) We observe the effects of finite temperature and density on the phase structure of fundamental matter in the holographic QGP. We trace out the phase transition lines of different phases in the phase diagram.

2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Koushik Ganesan ◽  
Andrew Lucas

Abstract We initiate a study of finite temperature transport in gapless and strongly coupled quantum theories with charge and dipole conservation using gauge-gravity duality. In a model with non-dynamical gravity, the bulk fields of our model include a suitable mixed-rank tensor which encodes the boundary multipole symmetry. We describe how such a theory can arise at low energies in a theory with a covariant bulk action. Studying response functions at zero density, we find that charge relaxes via a fourth-order subdiffusion equation, consistent with a recently-developed field-theoretic framework.


2007 ◽  
Vol 22 (26) ◽  
pp. 4717-4796 ◽  
Author(s):  
DIEGO RODRÍGUEZ-GÓMEZ

We review the holographic duals of gauge theories with eight supercharges obtained by adding very few flavors to pure supersymmetric Yang–Mills with 16 supercharges. Assuming a brane-probe limit, the gravity duals are engineered in terms of probe branes (the so-called flavor brane) in the background of the color branes. Both types of branes intersect on a given subspace in which the matter is confined. The gauge theory dual is thus the corresponding flavoring of the gauge theory with 16 supercharges. Those theories have in general a nontrivial phase structure; which is also captured in a beautiful way by the gravity dual. Along the lines of the gauge/gravity duality, we review also some of the results on the meson spectrum in the different phases of the theories.


2021 ◽  
Author(s):  
◽  
Mark Musonda Webster Shawa

This thesis discusses the prospect of finding the gravitational dual to the strongly coupled conformal fluids, with a special interest in the quark-gluon plasma. Such a task can be achieved by matching certain physical observables of two apparently different theories that are dually related owing to the fact that the same string theory can be viewed in two different ways. This is particularly useful when one of the theories is intractable while its dual is manageable. We begin by postulating a particular type of gravitational theory from which we determine graviton scattering amplitudes in a special regime of high momentum. Using the gauge–gravity duality dictionary, the graviton scattering amplitudes can be mapped to stress-tensor correlation functions in the gauge theory. One of the outcomes of high-energy scattering experiments involving the quark-gluon plasma is stress-tensor correlator data. This thesis provides an algorithm for matching graviton scattering amplitudes with stress-tensor correlator data which, in principle, can be used to identify the gravitational dual to the quark-gluon plasma.


2001 ◽  
Vol 16 (07) ◽  
pp. 1249-1259 ◽  
Author(s):  
D. METAXAS ◽  
V. P. NAIR

We construct plasmon creation and annihilation operators for Yang–Mills theory at finite temperature. This provides a starting point for perturbation theory with resummation of hard thermal loops in a Hamiltonian framework.


2015 ◽  
Vol 24 (10) ◽  
pp. 1530011 ◽  
Author(s):  
Paul M. Chesler ◽  
Wilke van der Schee

Gauge/gravity duality has provided unprecedented opportunities to study dynamics in certain strongly coupled gauge theories. This review aims to highlight several applications to heavy ion collisions including far-from-equilibrium dynamics, hydrodynamics and jet energy loss at strong coupling.


2017 ◽  
Vol 32 (36) ◽  
pp. 1747018 ◽  
Author(s):  
Daisuke Kadoh

The duality conjecture states that [Formula: see text]-dimensional maximally supersymmetric Yang–Mills theory at finite temperature is expected to be dual to the non extremal black [Formula: see text]-brane at large N. We perform the lattice simulations of SYM for [Formula: see text] to investigate the validity of the conjecture. We show that the conjecture is qualitatively valid by comparing lattice results of the black [Formula: see text]-branes mass with analytic expectations in the gravity side.


2015 ◽  
Vol 30 (27) ◽  
pp. 1530054 ◽  
Author(s):  
Anosh Joseph

We review the status of recent investigations on validating the gauge-gravity duality conjecture through numerical simulations of strongly coupled maximally supersymmetric thermal gauge theories. In the simplest setting, the gauge-gravity duality connects systems of D0-branes and black hole geometries at finite temperature to maximally supersymmetric gauged quantum mechanics at the same temperature. Recent simulations show that nonperturbative gauge theory results give excellent agreement with the quantum gravity predictions, thus proving strong evidence for the validity of the duality conjecture and more insight into quantum black holes and gravity.


Sign in / Sign up

Export Citation Format

Share Document