gravity duality
Recently Published Documents


TOTAL DOCUMENTS

193
(FIVE YEARS 23)

H-INDEX

28
(FIVE YEARS 2)

Author(s):  
Badis Ydri

A Gaussian approximation to the bosonic part of M-(atrix) theory with mass deformation is considered at large values of the dimension d. From the perspective of the gauge/gravity duality this action reproduces with great accuracy the stringy Hagedorn phase transition from a confinement (black string) phase to a deconfinement (black hole) phase whereas from the perspective of the matrix/geometry approach this action only captures a remnant of the geometric Yang–Mills-to-fuzzy-sphere phase where the fuzzy sphere solution is only manifested as a three-cut configuration termed the “baby fuzzy sphere” configuration. The Yang–Mills phase retains most of its characteristics with two exceptions: (i) the uniform distribution inside a solid ball suffers a crossover at very small values of the gauge coupling constant to a Wigner’s semicircle law, and (ii) the uniform distribution at small values of the temperatures is nonexistent.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Kyung Kiu Kim ◽  
Keun-Young Kim ◽  
Sang-Jin Sin ◽  
Yunseok Seo

Abstract In this paper we study a hysteric phase transition from weak localization phase to hysteric magnetoconductance phase using gauge/gravity duality. This hysteric phase is triggered by a spontaneous magnetization related to ℤ2 symmetry and time reversal symmetry in a 2+1 dimensional system with momentum relaxation. We derive thermoelectric conductivity formulas describing non-hysteric and hysteric phases. At low temperatures, this magnetoconductance shows similar phase transitions of topological insulator surface states. We also obtain hysteresis curves of Seebeck coefficient and Nernst signal. It turns out that our impurity parameter changes magnetic properties of the dual system. This is justified by showing increasing susceptibility and the spontaneous magnetization with increasing impurity parameter.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Raghu Mahajan ◽  
Donald Marolf ◽  
Jorge E. Santos

Abstract In gauge/gravity duality, the bulk double cone geometry has been argued to account for a key feature of the spectral form factor known as the ramp. This feature is deeply associated with quantum chaos in the dual field theory. The connection with the ramp has been demonstrated in detail for two-dimensional theories of bulk gravity, but it appears natural in higher dimensions as well. In a general bulk theory the double cone might thus be expected to dominate the semiclassical bulk path integral for the boundary spectral form factor in the ramp regime. While other known spacetime wormholes have been shown to be unstable to brane nucleation when they dominate over known disconnected (factorizing) solutions, we argue below that the double cone is stable to semiclassical brane nucleation at the probe-brane level in a variety of string- and M-theory settings. Possible implications for the AdS/CFT factorization problem are briefly discussed.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Maximilian Attems

Abstract A smoking gun signature for a first-order phase transition with negative speed of sound squared $$ {c}_s^2 $$ c s 2 is the occurrence of a spinodal instability. In the gauge/gravity duality it corresponds to a Gregory-Laflamme type instability, which can be numerically simulated as the evolution of unstable planar black branes. Making use of holography its dynamics is studied far from and near a critical point with the following results. Near a critical point the interface between cold and hot stable phases, given by its width and surface tension, is found to feature a wider phase separation and a smaller surface tension. Far away from a critical point the formation time of the spinodal instability is reduced. Across softer and harder phase transitions, it is demonstrated that mergers of equilibrated peaks and unstable plateaux lead to the preferred final single phase separated solution. Finally, a new atypical setup with dissipation of a peak into a plateau is discovered. In order to distinguish the inhomogeneous states I propose a new criterium based on the maximum of the transverse pressure at the interface which encodes phase-mixed peaks versus fully phase separated plateaux.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Alexander Avdoshkin ◽  
Rustem Sharipov

Abstract We consider a holographic model of strongly interacting plasma with a gravitational anomaly. In this model, we compute parity-odd responses of the system at finite temperature and chemical potential to external electromagnetic and gravitational fields. Working within the linearized fluid/gravity duality, we performed the calculation up to the third order in gradient expansion. Besides reproducing the chiral magnetic (CME) and vortical (CVE) effects we also obtain gradient corrections to the CME and CVE due to the gravitational anomaly. Additionally, we find energy-momentum and current responses to the gravitational field similarly determined by the gravitational anomaly. The energy-momentum response is the first purely gravitational transport effect that has been related to quantum anomalies in a holographic theory.


Author(s):  
Davood Momeni ◽  
Phongpichit Channuie

In this paper, we investigate a feasible holography with the Kitaev model using dilatonic gravity in AdS2. We propose a generic dual theory of gravity in the AdS2 and suggest that this bulk action is a suitable toy model in studying quantum mechanics in Kitaev model using gauge/gravity duality. This gives a possible equivalent description for the Kitaev model in the dual gravity bulk. Scalar and tensor perturbations are investigated in details. In the case of near AdS perturbation, we show that the geometry still “freezes” as is AdS, while the dilation perturbation decays at the AdS boundary safely. The time-dependent part of the perturbation is an oscillatory model. We discover that the dual gravity induces an effective and renormalizable quantum action. The entanglement entropy for bulk theory is computed using extremal surfaces. We prove that these surfaces have a fold bifurcation regime of criticality.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
T. Daniel Brennan ◽  
Emil J. Martinec

Abstract The near-horizon region of Neveu-Schwarz fivebranes provides interesting examples of gauge/gravity duality. We revisit the structure of wrapped and/or intersecting fivebranes using the tools of null-gauged WZW models in worldsheet string theory, revealing the effective geometry of the fivebrane throat in a variety of examples. Variant gaugings yield linear dilaton fivebrane throats with AdS3 caps, providing a wealth of information about the near-BPS structure of the corresponding spacetime CFT duals.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Sabyasachi Maulik ◽  
Harvendra Singh

Abstract Gauge/gravity duality relates an AdS black hole with uniform boost with a boosted strongly-coupled CFT at finite temperature. We study the perturbative change in holographic entanglement entropy for strip sub-region in such gravity solutions up to third order and try to formulate a first law of entanglement thermodynamics including higher order corrections. The first law receives important contribution from an entanglement chemical potential in presence of boost. We find that suitable modifications to the entanglement temperature and entanglement chemical potential are required to account for higher order corrections. The results can be extended to non-conformal cases and AdS plane wave background.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Hua-Bi Zeng ◽  
Chuan-Yin Xia ◽  
Hai-Qing Zhang

Abstract Formation and evolution of topological defects in course of non-equilibrium symmetry breaking phase transitions is of wide interest in many areas of physics, from cosmology through condensed matter to low temperature physics. Its study in strongly coupled systems, in absence of quasiparticles, is especially challenging. We investigate breaking of U(1) symmetry and the resulting spontaneous formation of vortices in a (2 + 1)-dimensional holographic superconductor employing gauge/gravity duality, a ‘first-principles’ approach to study strongly coupled systems. Magnetic fluxons with quantized fluxes are seen emerging in the post-transition superconducting phase. As expected in type II superconductors, they are trapped in the cores of the order parameter vortices. The dependence of the density of these topological defects on the quench time, the dispersion of the typical winding numbers, and the vortex-vortex correlations are consistent with predictions of the Kibble-Zurek mechanism.


Sign in / Sign up

Export Citation Format

Share Document