scholarly journals Non-hermitian holography

2020 ◽  
Vol 9 (3) ◽  
Author(s):  
Daniel Arean ◽  
Karl Landsteiner ◽  
Ignacio Salazar Landea

Quantum theory can be formulated with certain non-Hermitian Hamiltonians. An anti-linear involution, denoted by PT, is a symmetry of such Hamiltonians. In the PT-symmetric regime the non-Hermitian Hamiltonian is related to a Hermitian one by a Hermitian similarity transformation. We extend the concept of non-Hermitian quantum theory to gauge-gravity duality. Non-Hermiticity is introduced via boundary conditions in asymptotically AdS spacetimes. At zero temperature the PT phase transition is identified as the point at which the solutions cease to be real. Surprisingly at finite temperature real black hole solutions can be found well outside the quasi-Hermitian regime. These backgrounds are however unstable to fluctuations which establishes the persistence of the holographic dual of the PT phase transition at finite temperature.

2018 ◽  
Vol 175 ◽  
pp. 08004 ◽  
Author(s):  
Raghav G. Jha ◽  
Simon Catterall ◽  
David Schaich ◽  
Toby Wiseman

The lattice studies of maximally supersymmetric Yang-Mills (MSYM) theory at strong coupling and large N is important for verifying gauge/gravity duality. Due to the progress made in the last decade, based on ideas from topological twisting and orbifolding, it is now possible to study these theories on the lattice while preserving an exact supersymmetry on the lattice. We present some results from the lattice studies of two-dimensional MSYM which is related to Type II supergravity. Our results agree with the thermodynamics of different black hole phases on the gravity side and the phase transition (Gregory–Laflamme) between them.


2017 ◽  
Vol 32 (36) ◽  
pp. 1747018 ◽  
Author(s):  
Daisuke Kadoh

The duality conjecture states that [Formula: see text]-dimensional maximally supersymmetric Yang–Mills theory at finite temperature is expected to be dual to the non extremal black [Formula: see text]-brane at large N. We perform the lattice simulations of SYM for [Formula: see text] to investigate the validity of the conjecture. We show that the conjecture is qualitatively valid by comparing lattice results of the black [Formula: see text]-branes mass with analytic expectations in the gravity side.


2008 ◽  
Vol 23 (14n15) ◽  
pp. 2161-2164 ◽  
Author(s):  
JUN NISHIMURA

We perform a direct test of the gauge/gravity duality by studying one-dimensional U (N) gauge theory with 16 supercharges at finite temperature using Monte Carlo simulation. In the 't Hooft large-N limit and in the strong coupling limit, the model is expected to have a dual gravity description in terms of the near-extremal black 0-brane solution in ten-dimensional type IIA supergravity. Our results provide the first example, in which the microscopic origin of the black hole thermodynamics is accounted for by solving explicitly the strongly coupled dynamics of the open strings attached to the D-branes.


2016 ◽  
Vol 94 (8) ◽  
Author(s):  
Masanori Hanada ◽  
Yoshifumi Hyakutake ◽  
Goro Ishiki ◽  
Jun Nishimura

2020 ◽  
Vol 29 (12) ◽  
pp. 2050081
Author(s):  
S. Rajaee Chaloshtary ◽  
M. Kord Zangeneh ◽  
S. Hajkhalili ◽  
A. Sheykhi ◽  
S. M. Zebarjad

We investigate a new class of [Formula: see text]-dimensional topological black hole solutions in the context of massive gravity and in the presence of logarithmic nonlinear electrodynamics. Exploring higher-dimensional solutions in massive gravity coupled to nonlinear electrodynamics is motivated by holographic hypothesis as well as string theory. We first construct exact solutions of the field equations and then explore the behavior of the metric functions for different values of the model parameters. We observe that our black holes admit the multi-horizons caused by a quantum effect called anti-evaporation. Next, by calculating the conserved and thermodynamic quantities, we obtain a generalized Smarr formula. We find that the first law of black holes thermodynamics is satisfied on the black hole horizon. We study thermal stability of the obtained solutions in both canonical and grand canonical ensembles. We reveal that depending on the model parameters, our solutions exhibit a rich variety of phase structures. Finally, we explore, for the first time without extending thermodynamics phase space, the critical behavior and reentrant phase transition for black hole solutions in massive gravity theory. We realize that there is a zeroth-order phase transition for a specified range of charge value and the system experiences a large/small/large reentrant phase transition due to the presence of nonlinear electrodynamics.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Koushik Ganesan ◽  
Andrew Lucas

Abstract We initiate a study of finite temperature transport in gapless and strongly coupled quantum theories with charge and dipole conservation using gauge-gravity duality. In a model with non-dynamical gravity, the bulk fields of our model include a suitable mixed-rank tensor which encodes the boundary multipole symmetry. We describe how such a theory can arise at low energies in a theory with a covariant bulk action. Studying response functions at zero density, we find that charge relaxes via a fourth-order subdiffusion equation, consistent with a recently-developed field-theoretic framework.


2013 ◽  
Vol 91 (7) ◽  
pp. 542-547 ◽  
Author(s):  
Solomon A. Owerre

We present the linear spin wave theory calculation of the superfluid phase of a hard-core boson J-K model with nearest neighbour exchange J and four-particle ring-exchange K at half filling on the triangular lattice, as well as the phase diagrams of the system at zero and finite temperatures. A similar analysis has been done on a square lattice (Schaffer et al. Phys. Rev. B, 80, 014503 (2009)). We find similar behaviour to that of a square lattice but with different spin wave values of the thermodynamic quantities. We also find that the pure J model (XY model), which has a well-known uniform superfluid phase with an ordered parameter [Formula: see text] at zero temperature is quickly destroyed by the inclusion of negative-K ring-exchange interactions, favouring a state with a (4π/3, 0) ordering wavevector. We further study the behaviour of the finite-temperature Kosterlitz–Thouless phase transition (TKT) in the uniform superfluid phase, by forcing the universal quantum jump condition on the finite-temperature spin wave superfluid density. We find that for K < 0, the phase boundary monotonically decreases to T = 0 at K/J = −4/3, where a phase transition is expected and TKT decreases rapidly, while for positive K, TKT reaches a maximum at some K ≠ 0. It has been shown on a square lattice using quantum Monte Carlo (QMC) simulations that for small K > 0 away from the XY point, the zero-temperature spin stiffness value of the XY model is decreased (Melko and Sandvik. Ann. Phys. 321, 1651 (2006)). Our result seems to agree with this trend found in QMC simulations for two-dimensional systems.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Euro Spallucci ◽  
Anais Smailagic

We study the phases of a Schwarzschild black hole in the Anti-deSitter background geometry. Exploiting fluid/gravity duality, we construct the Maxwell equal area isotherm   in the temperature-entropy plane, in order to eliminate negative heat capacity BHs. The construction we present here is reminiscent of the isobar cut in the pressure-volume plane which eliminates unphysical part of the Van der Walls curves below the critical temperature. Our construction also modifies the Hawking-Page phase transition. Stable BHs are formed at the temperature , while pure radiation persists for . turns out to be below the standard Hawking-Page temperature and there are no unstable BHs as in the usual scenario. Also, we show that, in order to reproduce the correct BH entropy , one has to write a black hole equation of state, that is, , in terms of the geometrical volume .


2010 ◽  
Vol 25 (34) ◽  
pp. 2859-2872 ◽  
Author(s):  
SPENTA R. WADIA

We discuss the AdS/CFT correspondence in which spacetime emerges from an interacting theory of D-branes and open strings. These ideas have a historical continuity with QCD which is an interacting theory of quarks and gluons. In particular, we review the classic case of D3 branes and the non-conformal D1 brane system. We outline by some illustrative examples the calculations that are enabled in a strongly coupled gauge theory by correspondence with dynamical horizons in semiclassical gravity in one higher dimension. We also discuss implications of the gauge fluid/gravity correspondence for the information paradox of black hole physics.


Sign in / Sign up

Export Citation Format

Share Document