scholarly journals Intermediate adhesion maximizes migration velocity of multicellular clusters

2021 ◽  
Vol 103 (3) ◽  
Author(s):  
Ushasi Roy ◽  
Andrew Mugler
Keyword(s):  
2017 ◽  
Vol 8 (3) ◽  
pp. 243-259 ◽  
Author(s):  
Nikita S. Kondratev ◽  
Peter V. Trusov ◽  
V. G. Bazhenov

1925 ◽  
Vol 9 (2) ◽  
pp. 123-136
Author(s):  
Howard J. Shaughnessy ◽  
Katharine I. Criswell

1. The strain of Bacterium coli used in these experiments multiplies in distilled water at pH 6.0 and pH 8.0 and in Ringer-Locke solution at pH 6.0. Under all the other conditions studied the numbers decrease with the passage of time. 2. The electrophoretic charge of the cells is highest in distilled water at pH 6.0 and pH 8.0. Under all other conditions studied the velocity of migration is decreased, but the decrease is immediate and is not affected by more prolonged exposure. 3. A strongly acid solution (pH 2.0) causes a rapid death of the cells and a sharp decrease in electrophoretic charge, sometimes leading to complete reversal. 4. A strongly alkaline solution (pH 11.0) is almost as toxic as a strongly acid one, although in distilled water the organisms survive fairly well at this reaction. Electrophoretic charge, on the other hand, is only slightly reduced in such an alkaline medium. 5. In distilled water, reactions near the neutral point are about equally favorable to both viability and electrophoretic charge, pH 8.0 showing slightly greater multiplication and a slightly higher charge than pH 11.0. In the presence of salts, however, pH 8.0 is much less favorable to viability and somewhat more favorable to electrophoretic charge than is pH 6.0. 6. Sodium chloride solutions, in the concentrations studied, all proved somewhat toxic and all tended to depress electrophoretic charge. Very marked toxicity was, however, exhibited only in a concentration of .725 M strength or over and at pH 8.0, while electrophoretic migration velocity was only slightly decreased at a concentration of .0145 M strength. 7. Calcium chloride was more toxic than NaCl, showing very marked effects in .145 M strength at pH 8.0 and in 1.45 M strength at pH 6.0. It greatly depressed electrophoretic charge even in .0145 M concentration. 8. Ringer-Locke solution proved markedly stimulating to the growth of the bacteria at pH 6.0 while at pH 8.0 it was somewhat toxic, though less so than the solutions of pure salts. It depressed migration velocity at all pH values, being more effective than NaCl in this respect, but less effective than CaCl2. 9. It would appear from these experiments that a balanced salt solution (Ringer-Locke's) may be distinctly favorable to bacterial viability in water at an optimum reaction while distinctly unfavorable in a slightly more alkaline solution. 10. Finally, while there is a certain parallelism between the influence of electrolytes upon viability and upon electrophoretic charge, the parallelism is not a close one and the two effects seem on the whole to follow entirely different laws.


Geophysics ◽  
2002 ◽  
Vol 67 (4) ◽  
pp. 1202-1212 ◽  
Author(s):  
Hervé Chauris ◽  
Mark S. Noble ◽  
Gilles Lambaré ◽  
Pascal Podvin

We present a new method based on migration velocity analysis (MVA) to estimate 2‐D velocity models from seismic reflection data with no assumption on reflector geometry or the background velocity field. Classical approaches using picking on common image gathers (CIGs) must consider continuous events over the whole panel. This interpretive step may be difficult—particularly for applications on real data sets. We propose to overcome the limiting factor by considering locally coherent events. A locally coherent event can be defined whenever the imaged reflectivity locally shows lateral coherency at some location in the image cube. In the prestack depth‐migrated volume obtained for an a priori velocity model, locally coherent events are picked automatically, without interpretation, and are characterized by their positions and slopes (tangent to the event). Even a single locally coherent event has information on the unknown velocity model, carried by the value of the slope measured in the CIG. The velocity is estimated by minimizing these slopes. We first introduce the cost function and explain its physical meaning. The theoretical developments lead to two equivalent expressions of the cost function: one formulated in the depth‐migrated domain on locally coherent events in CIGs and the other in the time domain. We thus establish direct links between different methods devoted to velocity estimation: migration velocity analysis using locally coherent events and slope tomography. We finally explain how to compute the gradient of the cost function using paraxial ray tracing to update the velocity model. Our method provides smooth, inverted velocity models consistent with Kirchhoff‐type migration schemes and requires neither the introduction of interfaces nor the interpretation of continuous events. As for most automatic velocity analysis methods, careful preprocessing must be applied to remove coherent noise such as multiples.


Geophysics ◽  
2021 ◽  
pp. 1-50
Author(s):  
German Garabito ◽  
José Silas dos Santos Silva ◽  
Williams Lima

In land seismic data processing, the prestack time migration (PSTM) image remains the standard imaging output, but a reliable migrated image of the subsurface depends on the accuracy of the migration velocity model. We have adopted two new algorithms for time-domain migration velocity analysis based on wavefield attributes of the common-reflection-surface (CRS) stack method. These attributes, extracted from multicoverage data, were successfully applied to build the velocity model in the depth domain through tomographic inversion of the normal-incidence-point (NIP) wave. However, there is no practical and reliable method for determining an accurate and geologically consistent time-migration velocity model from these CRS attributes. We introduce an interactive method to determine the migration velocity model in the time domain based on the application of NIP wave attributes and the CRS stacking operator for diffractions, to generate synthetic diffractions on the reflection events of the zero-offset (ZO) CRS stacked section. In the ZO data with diffractions, the poststack time migration (post-STM) is applied with a set of constant velocities, and the migration velocities are then selected through a focusing analysis of the simulated diffractions. We also introduce an algorithm to automatically calculate the migration velocity model from the CRS attributes picked for the main reflection events in the ZO data. We determine the precision of our diffraction focusing velocity analysis and the automatic velocity calculation algorithms using two synthetic models. We also applied them to real 2D land data with low quality and low fold to estimate the time-domain migration velocity model. The velocity models obtained through our methods were validated by applying them in the Kirchhoff PSTM of real data, in which the velocity model from the diffraction focusing analysis provided significant improvements in the quality of the migrated image compared to the legacy image and to the migrated image obtained using the automatically calculated velocity model.


Sign in / Sign up

Export Citation Format

Share Document